Chinese Journal of Lasers, Volume. 50, Issue 1, 0113011(2023)

Advances in In-Plane Hyperbolic Phonon Polaritons in Natural Layered Metamaterials

Lu Liu1, Yupeng Wang1, Yunxiu Ma2、*, Guogang Li1, and Zhigao Dai1、**
Author Affiliations
  • 1Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
  • 2School of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205, Hubei, China
  • show less
    References(42)

    [1] Liu X Z, Zhang X Y, Zhang S P et al. Light-matter coupling of two-dimensional semiconductors in micro-nano optical cavities[J]. Acta Optica Sinica, 41, 0823003(2021).

    [2] Wang Q, Zhong Y G, Zhao L Y et al. Lasers based on two-dimensional layered materials[J]. Chinese Journal of Lasers, 47, 0701008(2020).

    [3] Zhang H C, He P H, Niu L Y et al. Spoof plasmonic metamaterials[J]. Acta Optica Sinica, 41, 0124001(2021).

    [4] Zhang Q, Hu G W, Ma W L et al. Interface nano-optics with van der Waals polaritons[J]. Nature, 597, 187-195(2021).

    [5] Zheng Z B, Chen J N, Wang Y et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides[J]. Advanced Materials, 30, e1705318(2018).

    [6] Ma W L, Shabbir B, Ou Q D et al. Anisotropic polaritons in van der Waals materials[J]. InfoMat, 2, 777-790(2020).

    [7] Lei Y Y, Chen Q K, Liu Y T et al. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 51, 20220082(2022).

    [8] Li H, Hu D J, Qin F et al. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 14, 851-866(2021).

    [9] Hoffman A J, Alekseyev L, Howard S S et al. Negative refraction in semiconductor metamaterials[J]. Nature Materials, 6, 946-950(2007).

    [10] Lu D, Kan J J, Fullerton E E et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 9, 48-53(2014).

    [11] Yao J, Wang Y, Tsai K T et al. Design, fabrication and characterization of indefinite metamaterials of nanowires[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3434-3446(2011).

    [12] Yao J, Liu Z W, Liu Y M et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 321, 930(2008).

    [13] Forati E, Hanson G W, Yakovlev A B et al. Planar hyperlens based on a modulated graphene monolayer[J]. Physical Review B, 89, 081410(2014).

    [14] Dai S Y, Fei Z, Ma Q et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 343, 1125-1129(2014).

    [15] Ma W L, Alonso-González P, Li S J et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 562, 557-562(2018).

    [16] Taboada-Gutiérrez J, Álvarez-Pérez G, Duan J H et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation[J]. Nature Materials, 19, 964-968(2020).

    [17] Dai Z G, Hu G W, Ou Q D et al. Artificial metaphotonics born naturally in two dimensions[J]. Chemical Reviews, 120, 6197-6246(2020).

    [18] Folland T G, Caldwell J D. Precise control of infrared polarization using crystal vibrations[J]. Nature, 562, 499-501(2018).

    [19] Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 167, 779-780(1951).

    [20] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals[J]. Physical Review, 112, 1555-1567(1958).

    [21] Huo P C, Zhang S, Liang Y Z et al. Hyperbolic metamaterials and metasurfaces: fundamentals and applications[J]. Advanced Optical Materials, 7, 1801616(2019).

    [22] Caldwell J D, Lindsay L, Giannini V et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 4, 44-68(2015).

    [23] Dai Z G, Hu G W, Si G Y et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nature Communications, 11, 6086(2020).

    [24] Li P N, Dolado I, Alfaro-Mozaz F J et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 359, 892-896(2018).

    [25] Huang W C, Sun F S, Zheng Z B et al. Van der Waals phonon polariton microstructures for configurable infrared electromagnetic field localizations[J]. Advanced Science, 8, 2004872(2021).

    [26] Zhang Q, Ou Q D, Si G Y et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals[J]. Science Advances, 8, eabn9774(2022).

    [27] Zheng Z B, Xu N S, Oscurato S L et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Science Advances, 5, eaav8690(2019).

    [28] Martín-Sánchez J, Duan J H, Taboada-Gutiérrez J et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas[J]. Science Advances, 7, eabj0127(2021).

    [29] Zheng Z B, Jiang J Y, Xu N S et al. Controlling and focusing of in-plane hyperbolic phonon polaritons in α-MoO3 with plasmonic antenna[J]. Advanced Materials, 34, 2104164(2021).

    [30] Duan J, Álvarez-Pérez G, Tresguerres-Mata A I F et al. Planar refraction and lensing of highly confined polaritons in anisotropic media[J]. Nature Communications, 12, 4325(2021).

    [31] Álvarez-Pérez G, Duan J H, Taboada-Gutiérrez J et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium[J]. Science Advances, 8, eabp8486(2022).

    [32] Zheng Z B, Sun F S, Xu N S et al. Tunable hyperbolic phonon polaritons in a suspended van der Waals α-MoO3 with gradient gaps[J]. Advanced Optical Materials, 10, 2102057(2022).

    [33] Wu Y J, Ou Q D, Yin Y F et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation[J]. Nature Communications, 11, 2646(2020).

    [34] Hu G W, Ou Q D, Si G Y et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [35] Zheng Z B, Sun F S, Huang W C et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals[J]. Nano Letters, 20, 5301-5308(2020).

    [36] Duan J H, Capote-Robayna N, Taboada-Gutierrez J et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs[J]. Nano Letters, 20, 5323-5329(2020).

    [37] Duan J H, Álvarez-Pérez G, Voronin K V et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition[J]. Science Advances, 7, eabf2690(2021).

    [38] Zhang Q, Ou Q D, Hu G W et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces[J]. Nano Letters, 21, 3112-3119(2021).

    [39] Álvarez-Pérez G, González-Morán A, Capote-Robayna N et al. Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated graphene[J]. ACS Photonics, 9, 383-390(2022).

    [40] Zeng Y L, Ou Q D, Liu L et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals[J]. Nano Letters, 22, 4260-4268(2022).

    [41] Ruta F L, Kim B S Y, Sun Z Y et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures[J]. Nature Communications, 13, 3719(2022).

    [42] Hu H, Chen N, Teng H C et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures[J]. Nature Nanotechnology, 17, 940-946(2022).

    Tools

    Get Citation

    Copy Citation Text

    Lu Liu, Yupeng Wang, Yunxiu Ma, Guogang Li, Zhigao Dai. Advances in In-Plane Hyperbolic Phonon Polaritons in Natural Layered Metamaterials[J]. Chinese Journal of Lasers, 2023, 50(1): 0113011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Aug. 24, 2022

    Accepted: Nov. 15, 2022

    Published Online: Jan. 6, 2023

    The Author Email: Ma Yunxiu (yunxiu_ma@hue.edu.cn), Dai Zhigao (daizhigao@cug.edu.cn)

    DOI:10.3788/CJL221174

    Topics