Chinese Journal of Lasers, Volume. 41, Issue 10, 1003010(2014)
Effect of Femtosecond Laser Parameters on TiC Ceramic Micro-Hole Drilling
[1] [1] P Ettmayer, W Lengauer. The story of cermets[J]. Powder Metallurgy International, 1989, 21(2): 37-38.
[2] [2] Zhang Xinghong, He Xiaodong, Chen Guiqing, et al.. Researeh on TiC-Ni cermets by SHS and PSEVDO heat isostatic pressing[J]. Powder Metallurgy Technology, 1999, 17(1): 24-28.
[3] [3] Liu Peisheng. Introduction to Porous Materials[M]. Beijing: Tsinghua University Press, 2004. 15-16.
[4] [4] Zhou Yu, Song Guiming, Wang Yujin, et al.. Fracture behavior of TiCp/W composites[J]. The Chinese Journal of Nonferrous Metals, 1999, 9(suppl.1): 158-165.
[5] [5] Guan Dehui, Yu Baohai, Bi Jing. Development and application of the cermets composite cutting tools for plastic granulation[J]. Powder Metallurgy Technology, 1998, 16(1): 36-40.
[6] [6] P Rudolph, K W Brzezinka, R Wsche, et al.. Physical chemistry of the femtosecond and nanosecond laser-material interaction with SiC and a SiC-TiC-TiB2 composite ceramic compound[J]. Applied Surface Science, 2003, 208-209: 285-291.
[7] [7] A N Samant, N B Dahotre. Laser machining of structural ceramics-a review[J]. Journal of the European Ceramic Society, 2009, 29: 969-993.
[8] [8] Luo Zhihai, Yang Runze. The situation and development of engineering ceramics machining technology[J]. Machinery, 2010, 48(556): 46-49.
[9] [9] Gu Wencai, Guo Zhongning, Yu Zhaoqin, et al.. Processing technology of arrayed micro holes and its application[J]. Machanical & Electrical Engineering Technology, 2008, 37(10): 13-17, 39.
[10] [10] Xia Bo, Jiang Lan, Wang Sumei, et al.. Femtosecond laser drilling of micro-holes[J]. Chinese J Lasers, 2013, 40(2): 0201001.
[11] [11] C K Malek, V Saile. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and-systems: a review[J]. Microelectronics Journal, 2004, 35(2): 131-143.
[12] [12] Jia Zhenyuan, Ren Xiaotao, Liu Wei, et al.. Rapid EDM systems for micro and small holes with high-aspect-ratio[J]. Optics and Precision Engineering, 2009, 17(12): 3055-3061.
[14] [14] Yu Wei, Wang Xichang, Gong Shuili, et al.. Rapid scanning electron beam processing technology and its potential application in aviation manufacturing industry[J]. Aeronautical Manufacturing Technology, 2010, (16): 44-47.
[15] [15] Zhang Wenfeng, Zhu Di. Electron beam machining and its application to the surface engineering[J]. New Technology & New Process, 2003, (8): 40-43.
[16] [16] P C Priarone, S Ruffa, J S Bedolla, et al.. A DoE approach to hole quality evaluation in drilling of an electronbeam melted titanium aluminide[C]. Procedia CIRP, 2013. 8: 481-486.
[17] [17] Y Chen, K Naessens, R Baets, et al.. Ablation of transparent materials using excimer lasers for photonic applications[J]. Optical Review, 2005, 12(6) : 427-441.
[20] [20] X C Wang, H Y Zheng, P L Chu, et al.. Femtosecond laser drilling of alumina ceramic substrates[J]. Applied Physics A, 2010, 101(2): 271-278.
[21] [21] D K Dasa, T M Pollock. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy[J]. Journal of Materials Processing Technology, 2009, 209: 5661-5668.
[22] [22] D Guo, K Cai, Y Huang, et al.. A novel anti-spatter and anti-crack laser drilling technique:application to ceramics[J]. Applied Physics A, 2003, 76: 1121-1124.
[23] [23] H Bian, Q Yang, F Chen, et al.. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process[J]. Materials Science and Engineering C, 2013, 33(5): 2795-2799.
[24] [24] J Yong, Qing Yang, Feng Chen, et al.. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 2013,111(1): 243-249.
[25] [25] A N Samant, N B Dahotre. Differences in physical phenomena governing laser machining of structural ceramics[J]. Ceramics International, 2009, 35: 2093-2097.
[26] [26] Wang Ning. Study on laser machining process for tiny hole on synthetic corundum material[J]. Journal of East China Jiaotong University, 2007, 24(1): 108-111.
[27] [27] Wentung Chien, Shiannchin Hou. Investigating the recast layer formed during the laser trepan drilling of inconel 718 using the taguchi method[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(3-4): 308-316.
[28] [28] Wang Yuying. Study trends and future prospects of femtosecond laser precise machining[J]. OEM Information, 2007, (3): 21-24.
[29] [29] Jiang Tao, Zhao Qingliang, Dong Zhiwei, et al.. Interaction mechanism of femtosecond laser and wide band-gap material[J]. Infrared and Laser Engineering, 2010, 39(6): 1044-1048.
[30] [30] D K Y Low, L Li, A G Corfe. Effects of assist gas on the physical characteristics of spatter during laser percussion drilling of NIMONIC 263 alloy[J]. Applied Surface Science, 2000, 154-155: 689-695.
[31] [31] Ye Cong, Xuanke Li, Yun Qin, et al.. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2011, 107: 128-134.
[32] [32] T Bansal, C A Durcan, N Jain, et al.. Synthesis of few-to-monolayer graphene on rutile titanium dioxide[J]. Carbon, 2013, 55: 168-175.
[33] [33] V Kiisk, T Kahro, J Kozlova, et al.. Nanosecond laser treatment of graphene[J]. Applied Surface Science, 2013, 276: 133-137.
[34] [34] G Li, L F Xia. Structural Characterization of TiCx films prepared by plasma based ion implantation[J]. Thin Solid Films, 2001, 396: 16-22.
[35] [35] L Zhu, J He, D Yan, et al.. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties[J]. Chinese Science Bulletin, 2007, 52(13): 1849-1855.
[36] [36] J F Moulder, W F Stickle, F E Sobol, et al.. Handbook of X-Ray Photoelectron Spectroscopy[M]. Eden Prairie, Minnesota: Physical Electronics Inc., 1995. 213.
[37] [37] A Cunha, A P Serro, V Oliveira, et al.. Wetting behaviour of femtosecond laser textured Ti-6Al-4V surfaces[J]. Applied Surface Science, 2013, 265: 688-696.
[38] [38] A D Bonis, A Galassoa, N Ibris, et al.. Rutile microtubes assembly from nanostructures obtained by ultra-short laser ablation of titanium in liquid[J]. Applied Surface Science, 2013, 268: 571-578.
[39] [39] S Yoon, C A Bridges, R R Unocic, et al.. Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries[J]. Journal of Materials Science, 2013, 48(15): 5125-5131.
[40] [40] S Zimmermann, U Specht, L Spie, et al.. Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening[J]. Materials Science & Engineering A, 2012, 558: 755-760.
[41] [41] Li Xiaoxi, Jia Tianqing, Feng Donghai, et al.. The mechanism of ablation of sapphire by anultra-short pulse laser[J]. Acta Physica Sinica, 2004, 53(7): 2154-2158.
[42] [42] G Miyaji, W Kobayashi, K Miyazaki. Femtosecond-laser-induced nanostructure formation and surface modification of diamond-like carbon film[J]. Electrochimica Acta, 2007, 53(1): 167-170.
Get Citation
Copy Citation Text
Wang Yuqian, Zhang Junzhan, Liu Yongsheng, Yang Xiaojun, Li Weinan, Wang Chunhui. Effect of Femtosecond Laser Parameters on TiC Ceramic Micro-Hole Drilling[J]. Chinese Journal of Lasers, 2014, 41(10): 1003010
Category: laser manufacturing
Received: Apr. 1, 2014
Accepted: --
Published Online: Sep. 5, 2014
The Author Email: Wang Yuqian (judie_wang@126.com)