Journal of Applied Optics, Volume. 45, Issue 2, 373(2024)

Design and research on pavement crack segmentation based on convolutional neural network

Yanning LIU and Guobao ZHANG*
Author Affiliations
  • School of Automation, Southeast University, Nanjing 210000, China
  • show less
    Figures & Tables(16)
    Algorithm process of pavement crack segmentation
    ConvNeXt module
    DUC module
    Pyramid pooling module
    Comparison of four loss functions
    Test results of different types of data in UCrack
    Test results of typical hard-to-divide data in UCrack
    Cross-dataset detection results on CRKWH100
    Detection results of actual data
    • Table 1. Overview of established UCrack dataset

      View table
      View in Article

      Table 1. Overview of established UCrack dataset

      数据集名称数量尺度/像素数据集特点描述
      ESAR[21]15768×512自然状态下动态拍摄的沥青路面;包含阴影干扰问题
      AIGLE_RN[21]38991×462动态拍摄的沥青路面;存在严重的光照不均和背景椒盐噪点问题
      311×462
      DeepCrack[22]300544 ×384混泥土和沥青路面;包含完好路面、受损路面、脏乱路面等场景
      GAPs384[23]509640×540德国沥青路面;包含坑洼,斑块等干扰问题
      Crack500[24]1 896640×340美国天普大学主校区的混泥土和沥青路面;包含车道线、坑洼破损、椒盐噪声等强干扰问题
      CFD[25]118480×320中国北京的沥青路面状况;包含阴影、车道线、油斑和水渍等干扰问题
    • Table 2. Comparison of loss functions with different weights

      View table
      View in Article

      Table 2. Comparison of loss functions with different weights

      损失函数(w2=0.1)aAccmAccF1PR
      BCE(w1=0.2)0.98380.90600.77040.72430.8228
      BCE(w1=0.3)0.98110.92570.75190.66420.8663
      BCE(w1=0.4)0.97900.93500.74400.64020.8881
      BCE(w1=0.5)0.97730.94070.72440.60540.9016
      BFocal(w1=0.2)0.98480.86580.76330.79000.7384
      BFocal(w1=0.3)0.98470.86140.75970.79270.7293
      BFocal(w1=0.4)0.98480.86470.76180.78930.7361
      BFocal(w1=0.5)0.98470.86870.76270.78170.7446
    • Table 3. Ablation study

      View table
      View in Article

      Table 3. Ablation study

      实验组ResNetConvNeXtDUCPPMaAcc/%mAcc/%F1/%P/%R/%
      197.4387.3976.3877.2575.54
      298.4588.1778.5679.5277.62
      398.4990.1878.0675.0881.28
      498.5987.7678.7181.4676.15
      598.5190.8980.9279.2082.72
    • Table 4. The test based on the established UCrack dataset

      View table
      View in Article

      Table 4. The test based on the established UCrack dataset

      训练集大小/张aAcc/%mAcc/%F1/%P/%R/%
      95998.4986.9576.5478.5974.60
      143898.5687.8977.8179.2176.47
      287698.5190.8980.9279.2082.72
    • Table 5. The test results on the CrackDataset dataset

      View table
      View in Article

      Table 5. The test results on the CrackDataset dataset

      训练集大小/张aAcc/%mAcc/%F1/%P/%R/%
      95996.9990.4479.2375.9282.84
      143898.4591.1878.1373.4983.39
      287697.0591.7980.1175.2285.68
    • Table 6. The test results on training datasets with different scene coverage

      View table
      View in Article

      Table 6. The test results on training datasets with different scene coverage

      训练数据集大小/张测试集aAcc//%mAcc/%F1/%P/%R/%
      UCrack(959)UCrack98.4986.9576.5478.5974.60
      UCrack(959)CrackDataset96.9990.4479.2375.9282.84
      CrackDataset(621)UCrack86.4174.9524.5315.2662.63
      CrackDataset(621)CrackDataset98.2194.7786.1081.8290.86
    • Table 7. The test results on the dataset of models

      View table
      View in Article

      Table 7. The test results on the dataset of models

      模型测试数据集aAcc//%mAcc/%F1/%P/%R/%FPS
      本文模型UCrack98.5190.8980.9279.2082.722.4
      CrackDataset97.0591.7980.1175.2285.68
      FCNUCrack98.5186.7076.7079.5474.053.6
      CrackDataset96.9886.2774.8575.6574.07
      U-NetUCrack98.5287.3377.1078.9275.353.4
      CrackDataset97.4289.0178.8778.2979.45
      spentUCrack98.5485.8676.6181.4872.291.7
      CrackDataset97.1386.9276.0876.8875.29
      DeepLabv3+UCrack98.6087.6178.2480.8075.833.1
      CrackDataset97.3587.8777.9378.877.08
    Tools

    Get Citation

    Copy Citation Text

    Yanning LIU, Guobao ZHANG. Design and research on pavement crack segmentation based on convolutional neural network[J]. Journal of Applied Optics, 2024, 45(2): 373

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 23, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email: Guobao ZHANG (章国宝(1965—))

    DOI:10.5768/JAO202445.0202004

    Topics