Infrared and Laser Engineering, Volume. 51, Issue 9, 20210831(2022)
Small scale optical receiver of spaceborne Doppler wind lidar
[1] Z S Liu, Z Chen, C R Yu, et al. Doppler wind lidar: From vehicle-mounted to space-borne. Journal of Atmospheric and Environment Optics, 10, 126-138(2015).
[2] Z A Yan, X Hu, W J Guo, et al. Near space Doppler lidar tech-niques and applications. Infrared and Laser Engineering, 50, 20210100(2021).
[3] [3] Kavaya M J, Spiers G D, Frehlich R G. Potential pitfalls related to spacebased lidar remote sensing of the Earth with an emphasis on wind measurement[C] Proceedings of SPIE, 2001, 4153: 385393.
[4] J P Guo, B Liu, W Gong, et al. Technical note: First comparison of wind observations from ESA ’s satellite mission Aeolus and ground-based radar wind profiler network of China. Atmospheric Chemistry and Physics, 21, 2945-2958(2021).
[5] O Reitebuch, C Lemmerz, U Paffrath, et al. The airborne demonstrator for the direct detection Doppler lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument. Journal of Atmospheric and Oceanic Technology, 26, 2516-2530(2009).
[6] U Marksteiner, C Lemmerz, O Lux, et al. Calibrations and wind observations of an airborne direct detection wind lidar supporting ESA’s Aeolus mission. Remote Sensing, 10, 2056(2018).
[7] W Benjamin, L Christian, G Alexander, et al. First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmospheric Measurement Techniques, 13, 2381-2396(2020).
[8] [8] Wood S A, Emmitt G D, Greco S, et al. DLSM: a coherent direct detection lidar simulation model f simulating spacebased aircraftbased lidar winds[C]Proceedings of SPIE, 2000, 4035: 212.
[9] [9] Emmitt G D. Combining direct coherent detection f Doppler wind lidar[C]Proceedings of SPIE, 2004, 5575: 3137.
[10] [10] Marx C T, Gentry B, Jdan P, et al. Lab demonstration of the hybrid Doppler wind lidar (HDWL) transceiver[C]Proceedings of SPIE, 2013, 8872: 887207.
[11] B L Chen, Z D Yang, M Min, et al. Application requirements and research progress of spaceborne Doppler wind lidar. Laser & Optoelectronics Progress, 57, 190003(2020).
[12] J J Wang, Z F Shu, X K Dou, et al. Research of the frequency response function of the Rayleigh Doppler wind lidar. Infrared and Laser Engineering, 41, 2364-2369(2012).
[13] G C Wang, D S Sun, L F Duan, et al. Analysis and design of Fabry-Perot etalon of Doppler wind lidar. Acta Optica Sinica, 31, 0301001(2011).
[14] F H Shen, D S Sun, C L Liu, et al. Single solid F-P etalon-based dual-frequency Doppler lidar. Infrared and Laser Engineering, 42, 2944-2950(2013).
[15] J Sun, Y T Feng, L Q Bai, et al. Design of thermal stable Fabry-Perot etalon for measuring wind. Optics and Precision Engineering, 21, 1167-1173(2013).
Get Citation
Copy Citation Text
Jiaqi Chu, Yuli Han, Dongsong Sun, Yiming Zhao, Hengjia Liu. Small scale optical receiver of spaceborne Doppler wind lidar[J]. Infrared and Laser Engineering, 2022, 51(9): 20210831
Category: Lasers & Laser optics
Received: Nov. 5, 2021
Accepted: Dec. 27, 2021
Published Online: Jan. 6, 2023
The Author Email: