Chinese Optics, Volume. 15, Issue 6, 1182(2022)
Multi-channel multiplexing digital holographic imaging for high throughput
[1] GABOR D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[2] HOEBE R A, VAN OVEN C H, GADELLA T W J JR, et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 25, 249-253(2007).
[3] GORDON M P, HA T, SELVIN P R. Single-molecule high-resolution imaging with photobleaching[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 6462-6465(2004).
[4] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 9, 686-698(1942).
[5] NOMARSKI G M. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 16, 9s-13s(1955).
[6] ZUO J M, VARTANYANTS I, GAO M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 300, 1419-1421(2003).
[7] ZHANG F C, CHEN B, MORRISON G R, et al. Phase retrieval by coherent modulation imaging[J]. Nature Communications, 7, 13367(2016).
[8] ZUO CH, LI J J, SUN J S, et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).
[9] ZUO CH, CHEN Q, ASUNDI A. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform[J]. Optics Express, 22, 9220-9244(2014).
[10] WALLER L, TIAN L, BARBASTATHIS G. Transport of Intensity phase-amplitude imaging with higher order intensity derivatives[J]. Optics Express, 18, 12552-12561(2010).
[11] FAULKNER H M L, RODENBURG J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).
[12] RODENBURG J M, FAULKNER H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).
[13] ZHENG G A, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[14] WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Optics and Lasers in Engineering, 155, 107068(2022).
[15] SUN J S, ZHANG Y ZH, CHEN Q, . Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Optica Sinica, 36, 1011005(2016).
[16] PAN A, ZHANG Y, ZHAO T Y, . Quantitative phase microscopy imaging based on ptychography[J]. Laser & Optoelectronics Progress, 54, 040001(2017).
[17] ZHANG SH H, ZHOU G CH, CUI B Q, . Review of fourier ptychographic microscopy: models, algorithms, and systems[J]. Laser & Optoelectronics Progress, 58, 1400001(2021).
[18] BAEK Y S, PARK Y K. Intensity-based holographic imaging via space-domain Kramers–Kronig relations[J]. Nature Photonics, 15, 354-360(2021).
[19] SHEN CH, LIANG M SH, PAN A, et al. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations[J]. Photonics Research, 9, 1003-1012(2021).
[20] LEE C, BAEK Y, HUGONNET H, et al. Single-shot wide-field topography measurement using spectrally multiplexed reflection intensity holography via space-domain Kramers–Kronig relations[J]. Optics Letters, 47, 1025-1028(2022).
[21] PARK Y K, DEPEURSINGE C, POPESCU G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 12, 578-589(2018).
[22] YAMAGUCHI I, ZHANG T. Phase-shifting digital holography[J]. Optics Letters, 22, 1268-1270(1997).
[23] AWATSUJI Y, SASADA M, KUBOTA T. Parallel quasi-phase-shifting digital holography[J]. Applied Physics Letters, 85, 1069-1071(2004).
[24] AWATSUJI Y, FUJII A, KUBOTA T, et al. Parallel three-step phase-shifting digital holography[J]. Applied Optics, 45, 2995-3002(2006).
[25] AWATSUJI Y, TAHARA T, KANEKO A, et al. Parallel two-step phase-shifting digital holography[J]. Applied Optics, 47, D183-D189(2008).
[26] LOHMANN A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 4, 1667-1668(1965).
[27] WANG Y X, WANG D Y, YANG Y SH, . Application and analysis in the biomedicine field using digital holographic technology[J]. Chinese Journal of Lasers, 41, 0209002(2014).
[28] HUANG ZH ZH, MEMMOLO P, FERRARO P, et al. Dual-plane coupled phase retrieval for non-prior holographic imaging[J]. PhotoniX, 3, 3(2022).
[29] PARK J, BRADY D, ZHENG G A, et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 3, 044001(2021).
[30] BIAN Z CH, GUO CH F, JIANG SH W, et al. Autofocusing technologies for whole slide imaging and automated microscopy[J]. Journal of Biophotonics, 13, e202000227(2020).
[31] AL-JANABI S, HUISMAN A, VAN DIEST P J. Digital pathology: current status and future perspectives[J]. Histopathology, 61, 1-9(2012).
[32] FARAHANI N, PARWANI A, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J]. Pathology and Laboratory Medicine International, 7, 23-33(2015).
[33] BARISONI L, LAFATA K J, HEWITT S M, et al. Digital pathology and computational image analysis in nephropathology[J]. Nature Reviews Nephrology, 16, 669-685(2020).
[34] HUGONNET H, KIM Y W, LEE M, et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 3, 026004(2021).
[35] BRADY D J, GEHM M E, STACK R A, et al. Multiscale gigapixel photography[J]. Nature, 486, 386-389(2012).
[36] BRADY D J, HAGEN N. Multiscale lens design[J]. Optics Express, 17, 10659-10674(2009).
[37] GOLISH D R, VERA E M, KELLY K J, et al. Development of a scalable image formation pipeline for multiscale gigapixel photography[J]. Optics Express, 20, 22048-22062(2012).
[38] FAN J T, SUO J L, WU J M, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).
[39] OU X Z, HORSTMEYER R, YANG C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 38, 4845-4848(2013).
[40] OU X Z, HORSTMEYER R, ZHENG G A, et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 23, 3472-3491(2015).
[41] LUO W, GREENBAUM A, ZHANG Y B, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science & Applications, 4, e261(2015).
[42] ISIKMAN S O, BISHARA W, MAVANDADI S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 7296-7301(2011).
[43] MICÓ V, ZHENG J J, GARCIA J, et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 11, 135-214(2019).
[44] GAO P, YUAN C J. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review[J]. Light:Advanced Manufacturing, 3, 6(2022).
[45] SHAKED N T, MICÓ V, TRUSIAK M, et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing[J]. Advances in Optics and Photonics, 12, 556-611(2020).
[46] DARDIKMAN G, SHAKED N T. Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography? [Invited][J]. Journal of the Optical Society of America A, 36, A1-A11(2019).
[47] GIRSHOVITZ P, SHAKED N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J]. Light:Science & Applications, 3, e151(2014).
[48] HUANG ZH ZH, CAO L C. High bandwidth-utilization digital holographic multiplexing: an approach using Kramers–Kronig relations[J]. Advanced Photonics Research, 3, 2100273(2022).
[49] MIRSKY S K, SHAKED N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J]. Optics Express, 27, 26708-26720(2019).
[50] WOLBROMSKY L, TURKO N A, SHAKED N T. Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing[J]. Optics Letters, 43, 2046-2049(2018).
[51] DARDIKMAN G, TURKO N A, NATIV N, et al. Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization[J]. Optics Express, 25, 33400-33415(2017).
[52] MARPLE S L. Computing the discrete-time "analytic" signal via FFT[J]. IEEE Transactions on Signal Processing, 47, 2600-2603(1999).
[53] BAEK Y S, LEE K R, SHIN S, et al. Kramers–Kronig holographic imaging for high-space-bandwidth product[J]. Optica, 6, 45-51(2019).
[54] FRENKLACH I, GIRSHOVITZ P, SHAKED N T. Off-axis interferometric phase microscopy with tripled imaging area[J]. Optics Letters, 39, 1525-1528(2014).
Get Citation
Copy Citation Text
Zheng-zhong HUANG, Liang-cai CAO. Multi-channel multiplexing digital holographic imaging for high throughput[J]. Chinese Optics, 2022, 15(6): 1182
Category: Review
Received: Apr. 13, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: