Chinese Journal of Lasers, Volume. 50, Issue 8, 0802305(2023)

Microstructure and Anisotropy of Laser‑Deposited Ti65 Titanium Alloy

Xiaodan Li1, Jiaqiang Ni1, Jun Yin1, Qingyang Jiao1, Feng Guan1, Weijian Liu1, Guang Yang2, and Bo He2、*
Author Affiliations
  • 1Shenyang Aircraft Corporation, Shenyang 110850, Liaoning, China
  • 2School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • show less
    References(25)

    [1] Cui G F, Xi M Z, Zhou H Y et al. Microstructure and mechanical properties of heat-treated TC17 titanium alloy formed via point-mode forging laser deposition[J]. Laser&Optoelectronics Progress, 59, 0316003(2022).

    [2] Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 34, 27-36(2014).

    [3] Li G P, Liu Y Y, Li D et al. Direct observation of the nucleation of rare-earth-rich phase particles in rapidly solidified Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Journal of Materials Science Letters, 15, 1003(1996).

    [5] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective[J]. Journal of Aeronautical Materials, 34, 1-26(2014).

    [6] Wu X Y, Chen Z Y, Cheng C et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy[J]. Chinese Journal of Materials Research, 33, 785-793(2019).

    [7] Xie H Z, Liu G X, Peng H Y et al. High temperature mechanical properties and influencing factors of Ti65 titanium alloy sheet[J]. Ordnance Material Science and Engineering, 45, 26-29(2022).

    [8] Yue K, Liu J R, Zhu S X et al. Origins of different tensile behaviors induced by cooling rate in a near alpha titanium alloy Ti65[J]. Materialia, 1, 128-138(2018).

    [9] Yao S K, Peng Q, Li Z Y. Effect of height on residual stress distribution in laser deposited thin-walled parts[J]. Laser&Optoelectronics Progress, 59, 0714007(2022).

    [10] Qin L Y, Xie Y K, Yang G et al. Detection and control of morphology deviation in laser deposition manufacturing[J]. Chinese Journal of Lasers, 48, 1002113(2021).

    [11] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [12] Pang X T, Cheng X, Tian X J et al. Microstructures and long-term aging stability of nickel-based superalloy DD98M by laser additive manufacturing[J]. Rare Metal Materials and Engineering, 48, 1615-1622(2019).

    [13] Xiao L R, Tan W, Liu L M et al. Low cycle fatigue behavior of GH3536 alloy formed via laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 2202009(2021).

    [14] Chen J, Zhang S Y, Xue L et al. Mechanical properties of Ti-6Al-4V alloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 36, 475-479(2007).

    [15] Zhang J L, Xin S W, Zhou W et al. Effect of heat treatments on microstructure and mechanical properties on electron beam welded joint of Ti650 alloy[J]. Rare Metal Materials and Engineering, 50, 299-303(2021).

    [16] Yuan H, Fang Y L, Wang H M. Influence of heat treatment on microstructure and compressive property of laser melting deposited TA15 titanium alloy[J]. Infrared and Laser Engineering, 39, 746-750(2010).

    [17] Zheng M Y, Li C W, Zhang X Y et al. The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition[J]. Additive Manufacturing, 37, 101660(2021).

    [18] Amine T, Newkirk J W, Liou F. Methodology for studying effect of cooling rate during laser deposition on microstructure[J]. Journal of Materials Engineering and Performance, 24, 3129-3136(2015).

    [19] Li H G, Huang Y J, Jiang S S et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy[J]. Materials & Design, 197, 109262(2021).

    [20] Sun J, Li X X, Zhang J H et al. Phase field modeling of formation mechanism of grain boundary allotriomorph in β→α phase transformation in Ti-6Al-4V alloy[J]. Acta Metallurgica Sinica, 56, 1113-1122(2020).

    [21] Wang P Q, Wang Y Y, Wu M J et al. Effects of heat treatment on microstructure, mechanical properties, and anisotropy of laser melting deposited TC4[J]. Chinese Journal of Lasers, 48, 1002116(2021).

    [22] Venkatesh V, Wilson A, Kamal M et al. Computational modeling in the primary processing of titanium: a review[J]. JOM, 61, 45-50(2009).

    [23] Xu J W, Zeng W D, Zhang X Y et al. Analysis of globularization modeling and mechanisms of alpha/beta titanium alloy[J]. Journal of Alloys and Compounds, 788, 110-117(2019).

    [24] Semiatin S L, Stefansson N, Doherty R D. Prediction of the kinetics of static globularization of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 36, 1372-1376(2005).

    [25] Wang F Q, Sun T, Wang M Q et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. Iron&Steel, 56, 89-102(2021).

    [26] Le F B. Microstructure and fatigue crack growth behavior of Ti-6Al-4V alloy fabricated via laser melting deposition[D](2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaodan Li, Jiaqiang Ni, Jun Yin, Qingyang Jiao, Feng Guan, Weijian Liu, Guang Yang, Bo He. Microstructure and Anisotropy of Laser‑Deposited Ti65 Titanium Alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802305

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Jun. 13, 2022

    Accepted: Jul. 12, 2022

    Published Online: Mar. 28, 2023

    The Author Email: He Bo (hebo1978@163.com)

    DOI:10.3788/CJL220961

    Topics