Chinese Journal of Lasers, Volume. 50, Issue 8, 0802305(2023)
Microstructure and Anisotropy of Laser‑Deposited Ti65 Titanium Alloy
[1] Cui G F, Xi M Z, Zhou H Y et al. Microstructure and mechanical properties of heat-treated TC17 titanium alloy formed via point-mode forging laser deposition[J]. Laser&Optoelectronics Progress, 59, 0316003(2022).
[2] Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 34, 27-36(2014).
[3] Li G P, Liu Y Y, Li D et al. Direct observation of the nucleation of rare-earth-rich phase particles in rapidly solidified Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Journal of Materials Science Letters, 15, 1003(1996).
[5] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective[J]. Journal of Aeronautical Materials, 34, 1-26(2014).
[6] Wu X Y, Chen Z Y, Cheng C et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy[J]. Chinese Journal of Materials Research, 33, 785-793(2019).
[7] Xie H Z, Liu G X, Peng H Y et al. High temperature mechanical properties and influencing factors of Ti65 titanium alloy sheet[J]. Ordnance Material Science and Engineering, 45, 26-29(2022).
[8] Yue K, Liu J R, Zhu S X et al. Origins of different tensile behaviors induced by cooling rate in a near alpha titanium alloy Ti65[J]. Materialia, 1, 128-138(2018).
[9] Yao S K, Peng Q, Li Z Y. Effect of height on residual stress distribution in laser deposited thin-walled parts[J]. Laser&Optoelectronics Progress, 59, 0714007(2022).
[10] Qin L Y, Xie Y K, Yang G et al. Detection and control of morphology deviation in laser deposition manufacturing[J]. Chinese Journal of Lasers, 48, 1002113(2021).
[11] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).
[12] Pang X T, Cheng X, Tian X J et al. Microstructures and long-term aging stability of nickel-based superalloy DD98M by laser additive manufacturing[J]. Rare Metal Materials and Engineering, 48, 1615-1622(2019).
[13] Xiao L R, Tan W, Liu L M et al. Low cycle fatigue behavior of GH3536 alloy formed via laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 2202009(2021).
[14] Chen J, Zhang S Y, Xue L et al. Mechanical properties of Ti-6Al-4V alloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 36, 475-479(2007).
[15] Zhang J L, Xin S W, Zhou W et al. Effect of heat treatments on microstructure and mechanical properties on electron beam welded joint of Ti650 alloy[J]. Rare Metal Materials and Engineering, 50, 299-303(2021).
[16] Yuan H, Fang Y L, Wang H M. Influence of heat treatment on microstructure and compressive property of laser melting deposited TA15 titanium alloy[J]. Infrared and Laser Engineering, 39, 746-750(2010).
[17] Zheng M Y, Li C W, Zhang X Y et al. The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition[J]. Additive Manufacturing, 37, 101660(2021).
[18] Amine T, Newkirk J W, Liou F. Methodology for studying effect of cooling rate during laser deposition on microstructure[J]. Journal of Materials Engineering and Performance, 24, 3129-3136(2015).
[19] Li H G, Huang Y J, Jiang S S et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy[J]. Materials & Design, 197, 109262(2021).
[20] Sun J, Li X X, Zhang J H et al. Phase field modeling of formation mechanism of grain boundary allotriomorph in β→α phase transformation in Ti-6Al-4V alloy[J]. Acta Metallurgica Sinica, 56, 1113-1122(2020).
[21] Wang P Q, Wang Y Y, Wu M J et al. Effects of heat treatment on microstructure, mechanical properties, and anisotropy of laser melting deposited TC4[J]. Chinese Journal of Lasers, 48, 1002116(2021).
[22] Venkatesh V, Wilson A, Kamal M et al. Computational modeling in the primary processing of titanium: a review[J]. JOM, 61, 45-50(2009).
[23] Xu J W, Zeng W D, Zhang X Y et al. Analysis of globularization modeling and mechanisms of alpha/beta titanium alloy[J]. Journal of Alloys and Compounds, 788, 110-117(2019).
[24] Semiatin S L, Stefansson N, Doherty R D. Prediction of the kinetics of static globularization of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 36, 1372-1376(2005).
[25] Wang F Q, Sun T, Wang M Q et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. Iron&Steel, 56, 89-102(2021).
[26] Le F B. Microstructure and fatigue crack growth behavior of Ti-6Al-4V alloy fabricated via laser melting deposition[D](2021).
Get Citation
Copy Citation Text
Xiaodan Li, Jiaqiang Ni, Jun Yin, Qingyang Jiao, Feng Guan, Weijian Liu, Guang Yang, Bo He. Microstructure and Anisotropy of Laser‑Deposited Ti65 Titanium Alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802305
Category: Laser Additive Manufacturing
Received: Jun. 13, 2022
Accepted: Jul. 12, 2022
Published Online: Mar. 28, 2023
The Author Email: He Bo (hebo1978@163.com)