Journal of Inorganic Materials, Volume. 36, Issue 4, 355(2021)

Research Progress of High Entropy Transition Metal Carbide Ceramics

Haoxuan WANG1, Qiaomu LIU2, and Yiguang WANG3、*
Author Affiliations
  • 11. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
  • 22. China Gas Turbine Establishment, Chengdu 610500, China
  • 33. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(101)

    [1] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 122, 448-511(2017).

    [2] YEH J W, CHEN S K, LIN S J et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 6, 299-303(2004).

    [4] UTT D, STUKOWSKI A, ALBE K. Grain boundary structure and mobility in high-entropy alloys: a comparative molecular dynamics study on a 11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe[J]. Acta Mater., 186, 11-19(2020).

    [7] ZHANG R Z, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties[J]. J. Mater. Chem. A, 7, 22148-22162(2019).

    [8] MURTY B S, YEH J W, RANGANATHAN S et al. High-entropy Alloys[J]. United Kingdom: Butterworth-Heinemann, 165-176(2019).

    [9] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 5, 295-309(2020).

    [10] LAL M S, SUNDARA R. High entropy oxides-a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications[J]. ACS Appl. Mater. Inter., 11, 30846-30857(2019).

    [12] BERARDAN D, FRANGER S, DRAGOE D et al. Colossal dielectric constant in high entropy oxides[J]. Phys. Status Solidi-R, 10, 328-333(2016).

    [13] BIESUZ M, SPIRIDIGLIOZZI L, DELLAGLI G et al. Synthesis and sintering of (Mg,Co,Ni,Cu,Zn)O entropy-stabilized oxides obtained by wet chemical methods[J]. J. Mater. Sci., 53, 8074-8085(2018).

    [15] DEMIRSKYI D, BORODIANSKA H, SUZUKI T S et al. High- temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC[J]. Scripta Mater., 164, 12-16(2019).

    [16] LI F, BAO W C, SUN S K et al. Synthesis of single-phase metal oxycarbonitride ceramics[J]. Scripta Mater., 176, 17-22(2020).

    [17] KUMAR A, GUPTA M. An insight into evolution of light weight high entropy alloys: a review[J]. Metals Basel, 6, 199(2016).

    [18] ROST C M, SACHET E, BORMAN T et al. Entropy-stabilized oxides[J]. Nat. Commun., 6, 8485(2015).

    [19] WEI X F, QIN Y, LIU J X et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering[J]. J. Eur. Ceram. Soc., 40, 935-941(2020).

    [20] LI F, LU Y, WANG X G et al. Liquid precursor-derived high- entropy carbide nanopowders[J]. Ceram. Int., 45, 22437-22441(2019).

    [21] WEI X F, LIU J X, LI F et al. High entropy carbide ceramics from different starting materials[J]. J. Eur. Ceram. Soc., 39, 2989-2994(2019).

    [22] DUSZA J, SVEC P, GIRMAN V et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level[J]. J. Eur. Ceram. Soc., 38, 4303-4307(2018).

    [23] ZHOU J Y, ZHANG J Y, ZHANG F et al. High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceram. Int., 44, 22014-22018(2018).

    [24] JIANG S C, HU T, GILD J et al. A new class of high-entropy perovskite oxides[J]. Scripta Mater., 142, 116-120(2018).

    [25] ZHAO Z F, CHEN H, XIANG H M et al. (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: a defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3[J]. J. Mater. Sci. Technol., 39, 167-172(2020).

    [26] DABROWA J, STYGAR M, MIKULA A et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure[J]. Mater. Lett., 216, 32-36(2018).

    [27] ZHAO Z F, CHEN H, XIANG H M et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: a high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3[J]. J. Mater. Sci. Technol., 38, 80-85(2020).

    [28] GILD J, KAUFMANN K, Vecchio K et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J]. Scripta. Mater., 170, 106-110(2019).

    [29] YAN J L, LIU F S, MA G H et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects[J]. Scripta Mater., 157, 129-134(2018).

    [30] GILD J, BRAUN J L, KAUFMANN K et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2[J]. J. Mater., 5, 337-343(2019).

    [34] TAN Y Q, CHEN C, Li S G et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor[J]. J. Alloys Compd., 816, 152523(2020).

    [35] REN K, WANG Q K, SHAO G et al. Multicomponent high- entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scripta Mater., 178, 382-386(2020).

    [36] DONG Y, REN K, LU Y H et al. High-entropy environmental barrier coating for the ceramic matrix composites[J]. J. Eur. Ceram. Soc., 39, 2574-2579(2018).

    [37] TENG Z, ZHU L N, TAN Y Q et al. Synjournal and structures of high-entropy pyrochlore oxides[J]. J. Eur. Ceram. Soc., 40, 1639-1643(2020).

    [38] ZHAO Z F, XIANG H M, DAI F Z et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J]. J. Mater. Sci. Technol., 35, 2647-2651(2019).

    [39] SAVINO R, FUMO M D S, PATERNA D et al. Aerothermodynamic study of UHTC-based thermal protection systems[J]. Aerosp. Sci. Technol., 9, 151-160(2005).

    [40] OPRKA M M, TALMY I G, ZAYKOSKI J A. Oxidation-based materials selection for 2000 ℃ + hypersonic aerosurfaces: theoretical considerations and historical experience[J]. J. Mater. Sci., 39, 5887-5904(2004).

    [41] KUBOTA Y, YANO M, INOUE R et al. Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment[J]. J. Eur. Ceram. Soc., 38, 1095-1102(2017).

    [42] RAMA RAO G A, VENUGOPAL V. Kinetics and mechanism of the oxidation of ZrC[J]. J. Alloys Compd., 206, 237-242(1994).

    [43] VOITOVICH R F, PUGACH E A. High-temperature oxidation of ZrC and HfC[J]. Powder Metall. Met. C, 12, 916-921(1973).

    [44] CHEN L Y, GU Y L, SHI L et al. Synjournal and oxidation of nanocrystalline HfB2[J]. J. Alloys Compd., 368, 353-356(2004).

    [45] SHIMADA S. Interfacial reaction on oxidation of carbides with formation of carbon[J]. Solid State Ionics, 141, 99-104(2001).

    [46] PARTHASARATHY T A, RAPP R A, OPEKA M M et al. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater., 55, 5999-6010(2007).

    [47] PARTHASARATHY T A, RAPP R A, OPEKA M M et al. Effect of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2[J]. J. Am. Ceram. Soc., 92, 1079-1086(2009).

    [48] JING Y, YUAN H B, LIAN Z S. Microstructure and mechanical properties of ZrB2-HfC ceramics influenced by HfC addition[J]. Materials, 11, 2046(2018).

    [49] MALLIK M, RAY K K, MITRA R. Oxidation behavior of hot pressed ZrB2-SiC and HfB2-SiC composites[J]. J. Eur. Ceram. Soc., 31, 199-215(2011).

    [50] TRIPP W C, GRAHAM H C. Thermogravimetric study of oxidation of ZrB2 in temperature range of 800 ℃ to 1500 ℃[J]. J. Electrochem. Soc., 118, 1195-1199(1971).

    [51] FAHRENHOLTZ W G. The ZrB2 volatility diagram[J]. J. Am. Ceram. Soc., 88, 3509-3512(2005).

    [52] FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region[J]. J. Am. Ceram. Soc., 90, 143-148(2007).

    [53] HU P, GUOLIN W, WANG Z. Oxidation mechanism and resistance of ZrB2-SiC composites[J]. Corros. Sci., 51, 2724-2732(2009).

    [54] JACOBSON N S, MYERS D L. Active oxidation of[J]. SiC. Oxid. Met., 75, 1-25(2011).

    [55] JACOBSON N S, HARDER B, MYERS D L et al. Oxidation transitions for SiC. Part I. Active-to-passive transitions[J]. J. Am. Ceram. Soc., 96, 838-844(2013).

    [56] WANG Y G, LUO L, SUN J et al. ZrB2-SiC(Al) ceramics with high resistance to oxidation at 1500 ℃[J]. Corros. Sci., 74, 154-158(2013).

    [57] HE J B, WANG Y G, LUO L et al. Oxidation behaviour of ZrB2-SiC (Al/Y) ceramics at 1700 ℃[J]. J. Eur. Ceram. Soc., 36, 3769-3774(2016).

    [58] WANG Y G, MA B S, LI L L et al. Oxidation behavior of ZrB2-SiC-TaC ceramics[J]. J. Am. Ceram. Soc., 95, 374-378(2012).

    [60] ZAPATASOLVAS E, JAYASEELAN D D, BROWN P et al. Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics[J]. J. Eur. Ceram. Soc., 34, 3535-3548(2014).

    [61] GILD J, ZHANG Y Y, HARRINGTON T et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci. Rep-UK, 6, 37946-37946(2016).

    [62] YE B L, WEN T Q, HUANG K H et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic[J]. J. Am. Ceram. Soc., 102, 4344-4352(2019).

    [63] HOSKING F M. Sodium compatibility of refractory-metal alloy- type 304l stainless-steel joints[J]. Int. J. Refract. Met. H., 64, S181-S190(1985).

    [64] WERNER E A. Introduction to the thermodynamics of materials[J]. Mat. Sci. Eng., 494, 464(2008).

    [66] LIU X J, WANG C P, GAO F et al. Thermodynamic calculation of phase equilibria in the Sn-Ag-Cu-Ni-Au System[J]. J. Electron. Mater., 36, 1429-1441(2007).

    [67] WANG C P, WANG J, GUO S H et al. Experimental investigation and thermodynamic calculation of the phase equilibria in the Co-Mo-W system[J]. Intermetallics, 17, 642-650(2009).

    [68] FENG R, GAO M C, LEE C et al. Design of light-weight high- entropy alloys[J]. Entropy Switz., 18, 333-353(2016).

    [69] KIM J. Applicability of special quasi-random structure models in thermodynamic calculations using semi-empirical Debye-Grüneisen theory[J]. J. Alloys Compd., 650, 564-571(2015).

    [70] VOAS B K, USHER T M, LIU X M et al. Special quasirandom structures to study the (K0.5Na0.5)NbO3 random alloy[J]. Phys. Rev. B, 90, 024105-1(2014).

    [71] SAHARA R, EMURA S, LI S et al. First-principles study of electronic structures and stability of body-centered cubic Ti-Mo alloys by special quasirandom structures[J]. Sci. Technol. Adv. Mat., 15, 035014-1(2014).

    [73] ABRIKOSOV I A, JOHANSSON B. Applicability of the coherent- potential approximation in the theory of random alloys[J]. Phys. Rev. B, 57, 14164-14173(1998).

    [74] YE B L, WEN T Q, NGUYEN M C et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics[J]. Acta Mater., 170, 15-23(2019).

    [79] YE B L, NING S S, LIU D et al. One-step synthesis of coral-like high-entropy metal carbide powders[J]. J.Am. Ceram. Soc., 102, 6372-6378.

    [81] NING S S, WEN T Q, YE B L et al. Low-temperature molten salt synjournal of high-entropy carbide nanopowders[J]. J. Am. Ceram. Soc., 103, 2244-2251(2020).

    [82] JAGADEESH S, VISHNU D S M, KIM H K et al. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder[J]. Angew. Chem. Int. Ed., 59, 11830-11835(2020).

    [83] BRAIC M, BRAIC V, BALACEANU M et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering[J]. Surf. Coat. Tech., 204, 2010-2014(2010).

    [84] JHONG Y S, HUANG C W, LIN S J et al. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings[J]. Mater. Chem. Phys., 210, 348-352(2017).

    [85] BRAIC M, BALACEANU M, VLADESCU A et al. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings[J]. Appl. Surf. Sci., 284, 671-678(2013).

    [86] BRAIC V, PARAU A C, PANA I et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings[J]. Surf. Coat. Tech., 258, 996-1005(2014).

    [87] CSANADI T, CASTLE E G, REECE M J et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression[J]. Sci. Rep-UK, 9, 10200(2019).

    [88] WANG C, YE Y, GUAN X et al. An analysis of tribological performance on Cr/GLC film coupling with Si3N4, SiC, WC, Al2O3 and ZrO2 in seawater[J]. Tribol. Int., 96, 77-86(2016).

    [89] HARRINGTON T J, GILD J, SARKER P et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater., 166, 271-280(2019).

    [90] WANG K, CHEN L, XU C G et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. J. Mater. Sci. Technol., 39, 99-105(2020).

    [91] HAN X X, VLADIMIR G, RICHARD S et al. Improved creep resistance of high entropy transition metal carbides[J]. J. Eur. Ceram. Soc., 40, 2709-2715(2020).

    [92] YAN X L, CONSTANTIN L, LU Y F et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J. Am. Ceram. Soc., 101, 4486-4491(2018).

    [93] CHEN H, XIANG H M, DAI F Z et al. Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating[J]. J. Mater. Sci. Technol., 35, 2404-2408(2019).

    [94] CHEN H, XIANG H M, DAI F Z et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. J. Mater. Sci. Technol., 35, 1700-1705(2019).

    [96] YE B L, WEN T Q, CHU Y H. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air[J]. J. Am. Ceram. Soc., 103, 500-507(2019).

    [98] BACKMAN L, GILD J, LUO J et al. Theoretical predictions of preferential oxidation in refractory high entropy materials[J]. Acta Mater., 197, 20-27(2020).

    [99] WANG H X, WANG S Y, CAO Y J et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 ℃[J]. J. Mater. Sci. Technol., 60, 147-155(2021).

    [101] WANG F, YAN X L, WANG T Y et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics[J]. Acta Mater., 195, 739-749(2020).

    Tools

    Get Citation

    Copy Citation Text

    Haoxuan WANG, Qiaomu LIU, Yiguang WANG. Research Progress of High Entropy Transition Metal Carbide Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 355

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Jul. 2, 2020

    Accepted: --

    Published Online: Nov. 24, 2021

    The Author Email: Yiguang WANG (wangyiguang@bit.edu.cn)

    DOI:10.15541/jim20200366

    Topics