Journal of Synthetic Crystals, Volume. 52, Issue 6, 982(2023)
Modulation of Semiconductor Single Quantum Dots Using Molecular Beam Epitaxy
[1] [1] NIELSEN M A, CHUANG I, GROVER L K. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558-559.
[2] [2] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. November 20-22, 1994, Santa Fe, NM, USA. IEEE, 2002: 124-134.
[3] [3] KUPKO T, VON HELVERSEN M, RICKERT L, et al. Tools for the performance optimization of single-photon quantum key distribution[J]. NPJ Quantum Information, 2020, 6: 29.
[4] [4] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350.
[5] [5] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.
[6] [6] KORZH B, LIM C C W, HOULMANN R, et al. Provably secure and practical quantum key distribution over 307 km of optical fibre[J]. Nature Photonics, 2015, 9(3): 163-168.
[7] [7] WALBORN S P, PIMENTEL A H, DAVIDOVICH L, et al. Quantum-enhanced sensing from hyperentanglement[J]. Physical Review A, 2018, 97: 010301.
[8] [8] AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641.
[9] [9] DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 2016, 116(2): 020401.
[10] [10] WANG H, DUAN Z C, LI Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter[J]. Physical Review Letters, 2016, 116(21): 213601.
[11] [11] DIETRICH C P, FIORE A, THOMPSON M G, et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits[J]. Laser & Photonics Reviews, 2016, 10(6): 857.
[12] [12] ZHAO T M, CHEN Y, YU Y, et al. Advanced technologies for quantum photonic devices based on epitaxial quantum dots[J]. Advanced Quantum Technologies, 2020, 3(2): 1900034.
[13] [13] ZHOU X Y, ZHAI L A, LIU J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies[J]. Photonics Insights, 2022, 1(2): R07.
[14] [14] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.
[15] [15] STIEVATER T H, LI X Q, STEEL D G, et al. Rabi oscillations of excitons in single quantum dots[J]. Physical Review Letters, 2001, 87(13): 133603.
[16] [16] SANTORI C, FATTAL D, VUCˇKOVIC' J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.
[17] [17] MULLER A, FLAGG E B, BIANUCCI P, et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity[J]. Physical Review Letters, 2007, 99(18): 187402.
[18] [18] VAMIVAKAS A N, ZHAO Y, LU C Y, et al. Erratum: spin-resolved quantum-dot resonance fluorescence[J]. Nature Physics, 2009, 5(12): 925.
[19] [19] HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217.
[20] [20] WANG J P, GONG M, GUO G C, et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots[J]. Physical Review Letters, 2015, 115(6): 067401.
[21] [21] MLLER M, BOUNOUAR S, JNS K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 2014, 8(3): 224-228.
[22] [22] STEVENSON R M, YOUNG R J, ATKINSON P, et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 2006, 439(7073): 179-182.
[23] [23] HUBER D, REINDL M, COVRE DA SILVA S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 033902.
[24] [24] TIRANOV A, ANGELOPOULOU V, VAN DIEPEN C J, et al. Collective super- and subradiant dynamics between distant optical quantum emitters[J]. Science, 2023, 379(6630): 389-393.
[25] [25] TANG J, CAO S, GAO Y N, et al. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields[J]. Applied Physics Letters, 2014, 105(4): 041109.
[26] [26] YU Y, SHANG X J, LI M F, et al. Single InAs quantum dot coupled to different “environments” in one wafer for quantum photonics[J]. Applied Physics Letters, 2013, 102(20): 201103.
[27] [27] KROUTVAR M, DUCOMMUN Y, HEISS D, et al. Optically programmable electron spin memory using semiconductor quantum dots[J]. Nature, 2004, 432(7013): 81-84.
[28] [28] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(5744): 2180-2184.
[29] [29] ATATRE M, DREISER J, BADOLATO A, et al. Quantum-dot spin-state preparation with near-unity fidelity[J]. Science, 2006, 312(5773): 551-553.
[30] [30] XU X D, YAO W, SUN B, et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy[J]. Nature, 2009, 459(7250): 1105-1109.
[31] [31] LU C Y, ZHAO Y, VAMIVAKAS A N, et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence[J]. Physical Review B, 2010, 81(3): 035332.
[32] [32] GAO W B, FALLAHI P, TOGAN E, et al. Quantum teleportation from a propagating photon to a solid-state spin qubit[J]. Nature Communications, 2013, 4: 2744.
[33] [33] SCHWARTZ I, COGAN D, SCHMIDGALL E R, et al. Deterministic generation of a cluster state of entangled photons[J]. Science, 2016, 354(6311): 434-437.
[34] [34] KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 8204.
[35] [35] PEDERSEN F T, WANG Y, OLESEN C T, et al. Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide[J]. ACS Photonics, 2020, 7(9): 2343-2349.
[36] [36] SOMASCHI N, GIESZ V, DE SANTIS L, et al. Near-optimal single-photon sources in the solid state[J]. Nature Photonics, 2016, 10(5): 340-345.
[37] [37] BART N, DANGEL C, ZAJAC P, et al. Wafer-scale epitaxial modulation of quantum dot density[J]. Nature Communications, 2022, 13: 1633.
[38] [38] TOMM N, JAVADI A, ANTONIADIS N O, et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 2021, 16(4): 399-403.
[39] [39] UPPU R, PEDERSEN F T, WANG Y, et al. Scalable integrated single-photon source[J]. Science Advances, 2020, 6(50): eabc8268.
[40] [40] HUANG X Y, SU R B, YANG J W, et al. Wafer-scale epitaxial low density InAs/GaAs quantum dot for single photon emitter in three-inch substrate[J]. Nanomaterials, 2021, 11(4): 930.
[41] [41] UNSLEBER S, HE Y M, GERHARDT S, et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency[J]. Optics Express, 2016, 24(8): 8539.
[42] [42] SCHIMPF C, REINDL M, BASSO BASSET F, et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks[J]. Applied Physics Letters, 2021, 118(10): 100502.
[43] [43] SEGUIN R, SCHLIWA A, RODT S, et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots[J]. Physical Review Letters, 2005, 95(25): 257402.
[44] [44] SINGH R, BESTER G. Nanowire quantum dots as an ideal source of entangled photon pairs[J]. Physical Review Letters, 2009, 103(6): 063601.
[45] [45] WALTHER T, CULLIS A G, NORRIS D J, et al. Nature of the stranski-krastanow transition during epitaxy of InGaAs on GaAs[J]. Physical Review Letters, 2001, 86(11): 2381-2384.
[46] [46] SEGUIN R, SCHLIWA A, GERMANN T D, et al. Control of fine-structure splitting and excitonic binding energies in selected individual InAsGaAs quantum dots[J]. Applied Physics Letters, 2006, 89(26): 263109.
[47] [47] KITAMURA S, SENSHU M, KATSUYAMA T, et al. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm[J]. Nanoscale Research Letters, 2015, 10: 231.
[48] [48] RUIZ-MARN N, REYES D F, STANOJEVIC' L, et al. Effect of the AlAs capping layer thickness on the structure of InAs/GaAs QD[J]. Applied Surface Science, 2022, 573: 151572.
[49] [49] GURIOLI M, WANG Z M, RASTELLI A, et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices[J]. Nature Materials, 2019, 18(8): 799-810.
[50] [50] CHUNG T H, JUSKA G, MORONI S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes[J]. Nature Photonics, 2016, 10(12): 782-787.
[51] [51] LIU X M, HA N, NAKAJIMA H, et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy[J]. Physical Review B, 2014, 90(8): 081301.
[52] [52] GOLDMANN E, BARTHEL S, FLORIAN M, et al. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence[J]. Applied Physics Letters, 2013, 103(24): 242102.
[53] [53] HUANG X Y, YANG J W, SONG C K, et al. Self-assembled InAs/GaAs single quantum dots with suppressed InGaAs wetting layer states and low excitonic fine structure splitting for quantum memory[J]. Nanophotonics, 2022, 11(13): 3093-3100.
[54] [54] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145-195.
[55] [55] KIMBLE H J. The quantum Internet[J]. Nature, 2008, 453(7198): 1023-1030.
[56] [56] CAO X, ZOPF M, DING F. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901.
[57] [57] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418.
[58] [58] HUA Y L, ZHOU Z Q, LI C F, et al. Quantum light storage in rare-earth-ion-doped solids[J]. Chinese Physics B, 2018, 27(2): 020303.
[59] [59] TANG J S, ZHOU Z Q, WANG Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory[J]. Nature Communications, 2015, 6: 8652.
[60] [60] XU S W, WEI Y M, SU R B, et al. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator[J]. Photonics Research, 2022, 10(8): B1.
[61] [61] LIN Y T, YE Y Z, FANG W. Electrically driven single-photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071904.
[62] [62] YANG J Z, ZOPF M, DING F. Strain tunable quantum dot based non-classical photon sources[J]. Journal of Semiconductors, 2020, 41(1): 011901.
[63] [63] SALTER C L, STEVENSON R M, FARRER I, et al. An entangled-light-emitting diode[J]. Nature, 2010, 465(7298): 594-597.
[64] [64] BENNETT A J. Electrical control of semiconductor quantum dot single photon sources[M]//Semiconductor Nanodevices. Amsterdam: Elsevier, 2021: 295-317.
[65] [65] BENNETT A J, POOLEY M A, STEVENSON R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot[J]. Nature Physics, 2010, 6(12): 947-950.
[66] [66] XIANG Z H, HUWER J, SKIBA-SZYMANSKA J, et al. A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network[J]. Communications Physics, 2020, 3: 121.
[67] [67] LBL M C, SLLNER I, JAVADI A, et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode[J]. Physical Review B, 2017, 96(16): 165440.
[68] [68] CONTERIO M J, SKLD N, ELLIS D J P, et al. A quantum dot single photon source driven by resonant electrical injection[J]. Applied Physics Letters, 2013, 103(16): 162108.
[69] [69] EDIGER M, DALGARNO P A, SMITH J M, et al. Controlled generation of neutral, negatively-charged and positively-charged excitons in the same single quantum dot[J]. Applied Physics Letters, 2005, 86(21): 211909.
[70] [70] BRUNNER D, GERARDOT B D, DALGARNO P A, et al. A coherent single-hole spin in a semiconductor[J]. Science, 2009, 325(5936): 70-72.
[71] [71] KRONER M, GOVOROV A O, REMI S, et al. The nonlinear fano effect[J]. Nature, 2008, 451(7176): 311-314.
[72] [72] WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)[J]. Applied Physics Letters, 2007, 90(11): 113120.
[73] [73] WU J A, WANG Z M. Droplet epitaxy for advanced optoelectronic materials and devices[J]. Journal of Physics D: Applied Physics, 2014, 47(17): 173001.
[74] [74] HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105.
[75] [75] KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501.
[76] [76] HUANG X Y, ZHONG H C, YANG J W, et al. Morphological engineering of aluminum droplet etched nanoholes for symmetric GaAs quantum dot epitaxy[J]. Nanotechnology, 2020, 31(49): 495701.
[77] [77] YU Y, ZHONG H C, YANG J W, et al. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes[J]. Nanotechnology, 2019, 30(48): 485001.
[78] [78] BHATTACHARYA P, KAMATH K, PHILLIPS J, et al. Self-organized growth of In(Ga)As/GaAs quantum dots and their opto-electronic device applications[J]. Bulletin of Materials Science, 1999, 22(3): 519-529.
[79] [79] PATELLA F, ARCIPRETE F, FANFONI M, et al. Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001)[J]. Applied Physics Letters, 2006, 88(16): 161903.
[80] [80] SAMESHIMA K, SANO T, YAMAGUCHI K. Self-formation of ultrahigh-density (1012 cm-2) InAs quantum dots on InAsSb/GaAs(001) and their photoluminescence properties[J]. Applied Physics Express, 2016, 9(7): 075501.
[81] [81] SHANG X J, XU J X, MA B, et al. Proper in deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots[J]. Chinese Physics B, 2016, 25(10): 107805.
[82] [82] GARCIA A, MATEO C M, DEFENSOR M, et al. Influence of As4 flux on the growth kinetics, structure, and optical properties of InAsGaAs quantum dots[J]. Journal of Applied Physics, 2007, 102(7): 073526.
[83] [83] LEONARD D, POND K, PETROFF P M. Critical layer thickness for self-assembled InAs Islands on GaAs[J]. Physical Review B, 1994, 50(16): 11687-11692.
[84] [84] SAUTTER K E, VALLEJO K D, SIMMONDS P J. Strain-driven quantum dot self-assembly by molecular beam epitaxy[J]. Journal of Applied Physics, 2020, 128(3): 031101.
[85] [85] CHIA C K, ZHANG Y W, WONG S S, et al. Testing the upper limit of InAs/GaAs self-organized quantum dots density by fast growth rate[J]. Superlattices and Microstructures, 2008, 44(4/5): 420-424.
[86] [86] SUN J E, JIN P, WANG Z G. Extremely low density InAs quantum dots realized in situ on (100) GaAs[J]. Nanotechnology, 2004, 15(12): 1763-1766.
[87] [87] SASAKURA H, KAYAMORI S, ADACHI S, et al. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth[J]. Journal of Applied Physics, 2007, 102(1): 013515.
[88] [88] REZGUI K, OTHMEN R, CAVANNA A, et al. The improvement of InAs/GaAs quantum dot properties capped by graphene[J]. Journal of Raman Spectroscopy, 2013, 44(11): 1529-1533.
[89] [89] WANG Y, SHENG X Z, LIU Y, et al. PL of low-density InAs/GaAs quantum dots with different bimodal populations[J]. Micro & Nano Letters, 2017, 12(9): 599-604.
[90] [90] LEE J S, REN H W, SUGOU S, et al. In0.5Ga0.5As quantum dot intermixing and evaporation in GaAs capping layer growth[J]. Journal of Applied Physics, 1998, 84(12): 6686-6688.
[91] [91] TODA Y, MORIWAKI O, NISHIOKA M, et al. Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states[J]. Physical Review Letters, 1999, 82(20): 4114-4117.
[92] [92] VASANELLI A, FERREIRA R, BASTARD G. Continuous absorption background and decoherence in quantum dots[J]. Physical Review Letters, 2002, 89(21): 216804.
[93] [93] SINGH R, BESTER G. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots[J]. Physical Review Letters, 2010, 104(19): 196803.
[94] [94] TIRANOV A, ORTU A, WELINSKI S, et al. Spectroscopic study of hyperfine properties in 171Yb3+∶Y2SiO5[J]. Physical Review B, 2018, 98(19): 195110.
[95] [95] OLBRICH F, KETTLER J, BAYERBACH M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer[J]. Journal of Applied Physics, 2017, 121(18): 184302.
[96] [96] PAUL M, KETTLER J, ZEUNER K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm[J]. Applied Physics Letters, 2015, 106(12): 122105.
[97] [97] YUAN Z L, KARDYNAL B E, STEVENSON R M, et al. Electrically driven single-photon source[J]. Science, 2002, 295(5552): 102-105.
[98] [98] BENNETT A J, PATEL R B, SKIBA-SZYMANSKA J, et al. Giant Stark effect in the emission of single semiconductor quantum dots[J]. Applied Physics Letters, 2010, 97(3): 031104.
[99] [99] WARBURTON R J, SCHFLEIN C, HAFT D, et al. Optical emission from a charge-tunable quantum ring[J]. Nature, 2000, 405(6789): 926-929.
[100] [100] SCHNAUBER P, SCHALL J, BOUNOUAR S, et al. Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography[J]. Nano Letters, 2018, 18(4): 2336-2342.
[101] [101] ZHANG J X, DING F, ZALLO E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode[J]. Nano Letters, 2013, 13(12): 5808-5813.
[102] [102] GHALI M, OHTANI K, OHNO Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field[J]. Nature Communications, 2012, 3: 661.
[103] [103] PRECHTEL J H, KUHLMANN A V, HOUEL J, et al. Decoupling a hole spin qubit from the nuclear spins[J]. Nature Materials, 2016, 15(9): 981-986.
[104] [104] LUDWIG A, PRECHTEL J H, KUHLMANN A V, et al. Ultra-low charge and spin noise in self-assembled quantum dots[J]. Journal of Crystal Growth, 2017, 477: 193-196.
[105] [105] BENNETT A J, UNITT D C, SEE P, et al. Microcavity single-photon-emitting diode[J]. Applied Physics Letters, 2005, 86(18): 181102.
[106] [106] DA SILVA S F C, UNDEUTSCH G, LEHNER B, et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources[J]. Applied Physics Letters, 2021, 119(12): 120502.
Get Citation
Copy Citation Text
SONG Changkun, HUANG Xiaoying, CHEN Yingxin, YU Ying, YU Siyuan. Modulation of Semiconductor Single Quantum Dots Using Molecular Beam Epitaxy[J]. Journal of Synthetic Crystals, 2023, 52(6): 982
Category:
Received: Apr. 24, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: SONG Changkun (songchk3@mail2.sysu.edu.cn)
CSTR:32186.14.