Chinese Optics, Volume. 15, Issue 2, 210(2022)
Overview of 3D point cloud super-resolution technology
[1] LI S T. Application of point cloud in 3D laser scanner[J]. Geological and Mineral Surveying and Mapping, 3, 141-142(2020).
[2] DU R J, GE B ZH, CHEN L. Texture mapping of multi-view high-resolution images and binocular 3D point clouds[J]. Chinese Optics, 13, 1055-1064(2020).
[3] DU Q SH, LI D D, CHEN H, . PIN tip extraction from 3D point cloud of structured light[J]. Chinese Journal of Liquid Crystals and Displays, 36, 1331-1340(2021).
[4] WU K SH, WEI ZH H, HE X, . Signatures recognition based on strokes 3D depth feature[J]. Chinese Journal of Liquid Crystals and Displays, 34, 1013-1020(2019).
[5] TAN H CH, GENG Y B, DU W. An efficient method of face super-resolution fusion using 3D cloud points[J]. Optical Technique, 42, 501-505(2016).
[6] ZHANG Y, REN G Q, CHENG Z Y, . Application research of there-dimensional LiDAR in unmanned vehicle environment perception[J]. Laser & Optoelectronics Progress, 56, 130001(2019).
[7] WANG SH F, DAI X, XU N, . Overview on environment perception technology for unmanned ground vehicle[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 40, 1-6(2017).
[8] YANG B SH, LIANG F X, HUANG R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 46, 1509-1516(2017).
[9] ZHANG SH Y, HOU X Y, CUI H, . Depth image acquisition using laser speckle[J]. Chinese Optics, 9, 633-641(2016).
[10] BU Y M, DU X P, ZENG ZH Y, . Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 11, 711-727(2018).
[11] SU D, ZHANG Y, QU CH ZH, . Depth image restoration method based on color image contour[J]. Chinese Journal of Liquid Crystals and Displays, 36, 456-464(2021).
[12] FOIX S, ALENYA G, TORRAS C. Lock-in Time-of-Flight (ToF) cameras: a survey[J]. IEEE Sensors Journal, 11, 1917-1926(2011).
[13] [13] SCHUON S, THEOBALT C, DAVIS J, et al. . Highquality scanning using timeofflight depth superresolution[C]. Proceedings of 2008 IEEE Computer Society Conference on Computer Vision Pattern Recognition Wkshops, IEEE, 2008: 17.
[14] [14] BALURE C S, KINI M R. Depth image superresolution: a review wavelet perspective[C]. Proceedings of International Conference on Computer Vision Image Processing, Springer, 2017: 543555.
[15] XIAO S, HAN G Q, WO Y. Survey of digital image super resolution reconstruction technology[J]. Computer Science, 36, 8-13,54(2009).
[16] HARRIS J L. Diffraction and resolving power[J]. Journal of the Optical Society of America, 54, 931-936(1964).
[17] [17] GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGrawHill, 1968.
[18] XIE H P, XIE K L, YANG H T. Research progress of image super-resolution methods[J]. Computer Engineering and Applications, 56, 34-41(2020).
[19] VAN OUWERKERK J D. Image super-resolution survey[J]. Image and Vision Computing, 24, 1039-1052(2006).
[20] WANG H, ZHANG Y, SHEN H H, . Review of image enhancement algorithms[J]. Chinese Optics, 10, 438-448(2017).
[21] STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 6, 1715-1726(1989).
[22] [22] GEVREKCI M, PAKIN K. Depth map super resolution[C]. Proceedings of the 18th IEEE International Conference on Image Processing, IEEE, 2011: 34493452.
[23] PATTI A J, ALTUNBASAK Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants[J]. IEEE Transactions on Image Processing, 10, 179-186(2001).
[24] [24] TOMASI C, MUCHI R. Bilateral filtering f gray col images[C]. Sixth International Conference on Computer Vision, IEEE, 1998: 839846.
[25] KOPF J, COHEN M F, LISCHINSKI D, et al. Joint bilateral upsampling[J]. ACM Transactions on Graphics, 26, 96-es(2007).
[26] TU Y F, ZHANG X D, ZHANG J, . Depth map super-resolution reconstruction based on the edge feature-guided[J]. Computer Applications and Software, 34, 220-225(2017).
[27] [27] YANG Q X, YANG R G, DAVIS J, et al.. Spatialdepth super resolution f range images[C]. Proceedings of 2007 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2007: 18.
[28] [28] CHAN D, BUISMAN H, THEOBALT C, et al.. A NoiseAware Filter f RealTime Depth Upsampling[C]. Multicamera & Multimodal Sens Fusion Algithms Applications, Marseille, France: M2SFA2, 2008: inria00326784.
[29] HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1397-1409(2013).
[30] [30] FERSTL D, REINBACHER C, RANFTL R, et al. . Image guided depth upsampling using anisotropic total generalized variation[C]. 2013 IEEE International Conference on Computer Vision, IEEE, 2013: 9931000.
[31] DI W W, ZHANG X D, HU L M, . Depth image super-resolution based on second-order total generalized variation constrained by color image[J]. Journal of Image and Graphics, 19, 1162-1167(2014).
[32] WANG Y, PIAO Y, SUN R CH. Depth image super-resolution construction combined with high-resolution color image of the same scene[J]. Acta Optica Sinica, 37, 0810002(2017).
[33] [33] DIEBEL J, THRUN S. An application of markov rom fields to range sensing[C]. Proceedings of the 18th Conference on Neural Infmation Processing Systems, ACM, 2005: 291298.
[34] CHEN J Q, LI R. A depth map super-resolution reconstruction based on improved markov random field[J]. Microprocessors, 38, 60-63,71(2017).
[35] [35] PARK J, KIM H, TAI Y W, et al.. High quality depth map upsampling f 3DTOF cameras[C]. 2011 International Conference on Computer Vision, IEEE, 2011: 16231630.
[36] [36] SSTEIN D, PAL C. Learning conditional rom fields f stereo[C]. 2007 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2007: 18.
[37] [37] DONG CH, LOY C C, HE K M, et al.. Learning a deep convolutional wk f image superresolution[C]. Proceedings of the 13th European Conference on Computer Vision, Springer, 2014: 184199.
[38] DONG CH, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[39] [39] YU L Q, LI X ZH, FU C W, et al.. PU: point cloud upsampling wk[C]. 2018 IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2018: 27902799.
[40] [40] LES R Q, SU H, KAICHUN M, et al.. Point: deep learning on point Sets f 3D classification segmentation[C]. 2017 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2017: 7785.
[41] [41] QI C R, YI L, SU H, et al.. Point++: deep hierarchical feature learning on point sets in a metric space[C]. Proceedings of the 31st International Conference on Neural Infmation Processing Systems, ACM, 2017: 51055114.
[42] [42] WANG Y F, WU SH H, HUANG H, et al.. Patchbased progressive 3D point set upsampling[C]. 2019 IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2019: 59515960.
[43] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).
[44] [44] LI R H, LI X ZH, FU C W, et al.. PUGAN: a point cloud upsampling adversarial wk[C]. 2019 IEEECVF International Conference on Computer Vision, IEEE, 2019: 72027211.
[45] [45] YANG Y Q, FENG CH, SHEN Y R, et al.. Folding: point cloud autoencoder via deep grid defmation[C]. 2018 IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2018: 206215.
[46] [46] KIPF T N, WELLING M. Semisupervised classification with graph convolutional wks[C]. 5th International Conference on Learning Representations, OpenReview. , 2017.
[47] [47] QIAN G CH, ABUALSHOUR A, LI G H, et al.. PUGCN: point cloud upsampling using graph convolutional wks[C]. 2021 IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2021: 1167811687.
[48] WU H, ZHANG J, HUANG K. Point Cloud Super Resolution with Adversarial Residual Graph Networks[J]. arXiv preprint, arXiv: 1908.02111(2019).
[49] [49] YANG L B, WANG SH SH, MA S W, et al.. HiFaceGAN: face renovation via collabative suppression replenishment[C]. Proceedings of the 28th ACM International Conference on Multimedia, ACM, 2020: 15511560.
[50] SHAN T X, WANG J K, CHEN F F, et al. Simulation-based lidar super-resolution for ground vehicles[J]. Robotics and Autonomous Systems, 134, 103647(2020).
Get Citation
Copy Citation Text
Yong BI, Ming-qi PAN, Shuo ZHANG, Wei-nan GAO. Overview of 3D point cloud super-resolution technology[J]. Chinese Optics, 2022, 15(2): 210
Category: Review
Received: Oct. 8, 2021
Accepted: Dec. 20, 2021
Published Online: Mar. 28, 2022
The Author Email: