Optics and Precision Engineering, Volume. 31, Issue 21, 3178(2023)

Mandibular fracture detection with 3M-YOLOv5 network based on enhanced feature extraction capability

Tao ZHOU1,2, Yuhu DU1、*, Daozong SHI1, Caiyue PENG1, and Huiling LU3
Author Affiliations
  • 1College of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan75001, China
  • 3School of Medical Information & Engineering, Ningxia Medical University, Yinchuan750004, China
  • show less
    References(25)

    [1] ROCCIA F, SOBRERO F, RAVEGGI E et al. European multicenter prospective analysis of the use of maxillomandibular fixation for mandibular fractures treated with open reduction and internal fixation[J]. Journal of Stomatology, Oral and Maxillofacial Surgery, 124, 101376(2023).

    [2] ZHOU T, HOU S B, LU H L et al. Exploring the improved mechanism of U-Net and its application in medical image segmentation[J]. Journal of Biomedical Engineering, 39, 806-825(2022).

    [3] MENG X H, WU D J, WANG Z et al. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance[J]. Skeletal Radiology, 50, 1821-1828(2021).

    [4] ZHOU Q Q, TANG W, WANG J S et al. Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network[J]. European Radiology, 31, 3815-3825(2021).

    [5] XUE L Y, YAN W N, LUO P et al. Detection and localization of hand fractures based on GA_Faster R-CNN[J]. Alexandria Engineering Journal, 60, 4555-4562(2021).

    [6] KITAMURA G, CHUNG C Y, MOORE B E. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation[J]. Journal of Digital Imaging, 32, 672-677(2019).

    [7] YUAN G, LIU H Z, JIANG L et al. CCE-Net: a rib fracture diagnosis network based on contralateral, contextual, and edge enhanced modules[J]. Biomedical Signal Processing and Control, 75, 103620(2022).

    [8] LIU P R, LU L, CHEN Y F et al. Artificial intelligence to detect the femoral intertrochanteric fracture: the arrival of the intelligent-medicine era[J]. Frontiers in Bioengineering and Biotechnology, 10, 927926(2022).

    [9] WU J F, LIU N J, LI X J et al. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study[J]. BMC Medical Imaging, 23, 1-12(2023).

    [10] WARIN K, LIMPRASERT W, SUEBNUKARN S et al. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs[J]. International Journal of Oral and Maxillofacial Surgery, 51, 1488-1494(2022).

    [11] WANG X B, XU Z N, TONG Y H et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network[J]. Clinical Oral Investigations, 26, 4593-4601(2022).

    [12] VINAYAHALINGAM S, VAN NISTELROOIJ N, VAN GINNEKEN B et al. Detection of mandibular fractures on panoramic radiographs using deep learning[J]. Scientific Reports, 12, 19596(2022).

    [13] SON D M, YOON Y A, KWON H J et al. Automatic detection of mandibular fractures in panoramic radiographs using deep learning[J]. Diagnostics, 11, 933(2021).

    [14] ZHOU T, YE X Y, LU H L et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 23848301-22(2022).

    [15] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[C](2021).

    [16] ZHANG S, CHE S B, LIU Z et al. A real-time and lightweight traffic sign detection method based on ghost-YOLO[J]. Multimedia Tools and Applications, 82, 26063-26087(2023).

    [17] WANG S, QU Z, LI C et al. BANet: Small and multi-object detection with a bidirectional attention network for traffic scenes[J]. Engineering Applications of Artificial Intelligence, 117, 105504(2023).

    [18] CHEN Y T, XIA R L, YANG K et al. MFFN: image super-resolution via multi-level features fusion network[J]. The Visual Computer, 1-16(2023).

    [19] JOSEPH R. YOLOv3:An incremental improvement[C](2018).

    [20] ALEXEY B, WANG C Y, LIAO H Y M et al. YOLOv4:Optimal speed and accuracy of object detection[J]. Image and Video Processing(2020).

    [21] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [22] ZHOU X Y, WANG D Q, KRÄHENBÜHL P et al. Objects as Points[C], 1904(2019).

    [25] ZHOU T, CHANG X Y, LU H L et al. Pooling operations in deep learning: from “invariable” to “variable”[J]. BioMed Research International, 2022, 1-17(2022).

    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Yuhu DU, Daozong SHI, Caiyue PENG, Huiling LU. Mandibular fracture detection with 3M-YOLOv5 network based on enhanced feature extraction capability[J]. Optics and Precision Engineering, 2023, 31(21): 3178

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 22, 2023

    Accepted: --

    Published Online: Jan. 5, 2024

    The Author Email: Yuhu DU (cy_dyh@163.com)

    DOI:10.37188/OPE.20233121.3178

    Topics