Journal of Quantum Optics, Volume. 29, Issue 2, 20501(2023)
Microwave Phase Noise Influence Measurement Based on Rydberg Atomic Antenna Mixing
[1] [1] ZHU L, SUOMALAINEN J, LIU J, et al. A review: Remote sensing sensors[J]. Multi-purposeful Application of Geospatial Data, 2018:19-42. DOI: 10.5772/intechopen.71049.
[2] [2] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. DOI: 10.1038/nphoton.2007.3.
[3] [3] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3):035002. DOI: 10.1103/RevModPhys.89.03500.
[4] [4] SIMONS M T, GORDON J A, HOLLOWAY C L, et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied PhysicsLetters, 2016, 108(17):174101. DOI: 10.1063/1.4947231.
[5] [5] KUMAR S, FAN H, KBLER H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8):8625-8637. DOI: 10.1364/OE.25.008625.
[6] [6] DEB A B, KJGAARD N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 2018, 112(21):211106. DOI: 10.1063/1.5031033.
[7] [7] MEYER D H, COX K C, FATEMI F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 2018, 112(21):211108. DOI: 10.1063/1.5028357.
[8] [8] SONG Z, LIU H, LIU X, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 2019, 27(6):8848-8857. DOI: 10.1364/OE.27.008848.
[9] [9] LIAO K Y, TU H T, YANG S Z, et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 2020, 101(5):053432. DOI: 10.48550/arXiv.2002.00855.
[10] [10] JIA F D, LIU X B, MEI J, et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A, 2021, 103(6):063113. DOI: 10.1103/PhysRevA.103.063113.
[11] [11] SEDLACEK J A, SCHWETTMANN A, KBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11):819-824. DOI: 10.1038/nphys2423.
[12] [12] FAN H, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(20):202001. DOI: 10.1088/0953-4075/48/20/202001.
[13] [13] FAN H, KUMAR S, SHENG J, et al. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields[J]. Physical Review Applied, 2015, 4(4):044015. DOI: 10.1103/PhysRevApplied.4.044015.
[14] [14] KUMAR S, FAN H, KBLER H, et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 2017, 7(1):1-10. DOI: 10.1038/srep42981.
[15] [15] SIMONS M T, HADDAB A H, GORDON J A, et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 2019, 114(11):114101. DOI: 10.1063/1.5088821.
[16] [16] GORDON J A, SIMONS M T, HADDAB A H, et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 2019, 9(4):045030. DOI: 10.1063/1.5095633.
[17] [17] SIMONS M T, HADDAB A H, GORDON J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 2019, 7:164975-164985. DOI: 10.1109/ACCESS.2019.2949017.
[18] [18] JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nat Phys, 2020, 16:911-915. DOI: 10.1038/s41567-020-0918-5.
[19] [19] HAN J, VOGT T, GROSS C, et al. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms[J]. Physical Review Letters, 2018, 120(9):093201. DOI: 10.1103/PhysRevLett.120.093201.
[20] [20] ANDERSON D A, SAPIRO R E, RAITHEL G. Rydberg atoms for radio-frequency communications and sensing: Atomic receivers for pulsed RF field and phase detection[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(4):48-56. DOI: 10.1109/MAES.2019.2960922.
[21] [21] KANDA M, DRIVER L D. An isotropic electric-field probe with tapered resistive dipoles for broad-band use, 100 kHz to 18 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 1987, 35(2):124-130. DOI: 10.1109/TMTT.1987.1133614.
[22] [22] KANDA M, ORR R. Near-field gain of a horn and an open-ended waveguide: Comparison between theory and experiment[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(1):33-40. DOI: 10.1109/TAP.1987.1143963.
[23] [23] KANDA M. Standard probes for electromagnetic field measurements[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(10):1349-1364. DOI: 10.1109/8.247775.
[24] [24] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9):1853-1857. DOI: 10.1109/LAWP.2019.2931450.
[25] [25] ROBINSON A K, PRAJAPATI N, SENIC D, et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 2021, 118(11):114001. DOI: 10.1063/5.0045601.
[26] [26] JIA F D, ZHANG H Y, LIU X B, et al. Transfer phase of microwave to beat amplitude in a Rydberg atom-based mixer by Zeeman modulation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54(16):165501. DOI: 10.1088/1361-6455/ac1b66.
[27] [27] LIU X B, JIA F D, ZHANG H Y, et al. An all optical phase detector by amplitude modulation of the local field in the Rydberg atom-based mixer[J]. Chinese Physics B, 2022. DOI 10.1088/1674-1056/ac6dbb.
[29] [29] HU J, LI H, SONG R, et al. Continuously tunable radio frequency electrometry with Rydberg atoms[J]. Applied Physics Letters, 2022, 121(1):014002. DOI: 10.1063/5.0086357.
[30] [30] HE J, LIU Q, YANG Z, et al. Noise spectroscopy with a Rydberg ensemble in a hot atomic vapor cell[J]. Physical Review A, 2021, 104(6):063120. DOI: 10.1103/PhysRevA.104.063120.
[31] [31] LAHAD O, FINKELSTEIN R, DAVIDSON O, et al. Recovering the homogeneous absorption of inhomogeneous media[J]. Physical Review Letters, 2019, 123(17):173203. DOI: 10.1103/PhysRevLett.123.173203.
Get Citation
Copy Citation Text
BAN Xiao-juan, SU Nan, LIU Yao, NIU Qi-qi, HE Jun, WANG Jun-min. Microwave Phase Noise Influence Measurement Based on Rydberg Atomic Antenna Mixing[J]. Journal of Quantum Optics, 2023, 29(2): 20501
Category:
Received: Jan. 7, 2023
Accepted: --
Published Online: Mar. 15, 2024
The Author Email: HE Jun (hejun@sxu.edu.cn)