Journal of Optoelectronics · Laser, Volume. 33, Issue 5, 488(2022)

A hyperspectral image classification algorithm based on deformable convolution

TANG Ting and PAN Xin*
Author Affiliations
  • [in Chinese]
  • show less
    References(12)

    [1] [1] IBRAHIM A,FRANZ B,AHMAD Z,et al.Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean(HICO)[J].Remote Sensing of Environment,2018,204:60-75.

    [2] [2] PIPITONE C,MALTESE A,DARDANELLI G,et al.Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS[J].Remote Sensing,2018,10(1):71.

    [3] [3] ZHANG D,ZHANG J H,WANG Z,et al.Tongue colour and coating prediction in traditional Chinese medicine based on visible hyperspectral imaging[J].IET Image Processing,2019,13(12):2265-2270.

    [4] [4] MELGANI F,BRUZZONE L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1778-1790.

    [7] [7] LEE H,KWON H.Going deeper with contextual CNN for hyperspectral image classification[J].IEEE Transactions on Image Processing,2017,26,4843-4855.

    [8] [8] ZHONG Z,LI J,LUO Z,et al.Spectral-spatial residual network for hyperspectral image classification:A 3-D deep learning framework[J].Remote Sensing,2017,56:847-858.

    [9] [9] WANG W,DOU S,JIANG Z,et al.A fast dense spectral-spatial convolution network framework for hyperspectral images classification[J].Remote Sensing,2018,10:1068.

    [10] [10] MA W,YANG Q,WU Y,et al.Double-branch multi-attention mechanism network for hyperspectral image classification[J].Remote Sensing,2019,11(11):1307.

    [11] [11] LI R,ZHENG S,DUAN C,et al.Classification of hyperspectral image based on double-branch dual-attention mechanism network[J].Remote Sensing,2020,12(3):582.

    [12] [12] DAI J F,QI H Z,XIONG Y W,et al.Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision (ICCV),Oct.22-29,2017,Venice,Italy,New York:IEEE,17453116.

    [13] [13] ZHU X Z,HU H,LIN S,et al.Deformable ConvNets v2:more deformable,better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),June 15-20,2019,Long Beach,CA,USA,New York:IEEE,2019:19263462.

    [14] [14] ZHU J,FANG L Y,GHAMISI P.Deformable convolutional neural networks for hyperspectral image classification[J].IEEE Geoscience and Remote Sensing Letters,2018,15(8):1254-1258.

    Tools

    Get Citation

    Copy Citation Text

    TANG Ting, PAN Xin. A hyperspectral image classification algorithm based on deformable convolution[J]. Journal of Optoelectronics · Laser, 2022, 33(5): 488

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 13, 2021

    Accepted: --

    Published Online: Oct. 9, 2024

    The Author Email: PAN Xin (pxffyfx@126.com)

    DOI:10.16136/j.joel.2022.05.0570

    Topics