International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 25101(2025)

Strong and thermally stable nanocrystalline Cu–Al alloy via Al segregation

Zhou Kaixuan, Wang Luling, Zhao Yonghao, Jin Shenbao, Mao Qingzhong, Shi Shaojia, Ma Longlong, Zhang Ruisheng, and Liu Jizi
References(65)

[1] [1] Hall E O 1951 The deformation and ageing of mild steel: III discussion of resultsProc. Phys. Soc.B64747–53

[2] [2] Petch N J 1953 The cleavage strength of polycrystalsJ. Iron Steel Inst.17425–28

[3] [3] Gertsman V Y and Birringer R 1994 On the room-temperature grain growth in nanocrystalline copperScr. Metal Mater.30577–81

[4] [4] Bansal C, Gao Z Q and Fultz B 1995 Grain growth and chemical ordering in (Fe, Mn)3SiNanostruct. Mater.5327–36

[5] [5] Du C Cet al2018 Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation toleranceNat. Commun.95389

[6] [6] Yan Y F, Kou S Q, Yang H Y, Shu S L, Qiu F, Jiang Q C and Zhang L C 2023 Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: preparation, performance, and mechanismsInt. J. Extrem. Manuf.5032006

[7] [7] Zhu R J, Zhou X and Li X Y 2023 Thermal stability of nanograins with grain boundary relaxation in microalloyed Cu-Sb and Cu-FeJ. Mater. Sci. Technol.15566–71

[8] [8] Li X Y, Zhou X and Lu K 2020 Rapid heating induced ultrahigh stability of nanograined copperSci. Adv.6eaaz8003

[9] [9] Mao Q Z, Zhang Y S, Guo Y Z and Zhao Y H 2021 Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wireCommun. Mater.246

[10] [10] Jin Z H, Li X Y and Lu K 2021 Formation of stable schwarz crystals in polycrystalline copper at the grain size limitPhys. Rev. Lett.127136101

[11] [11] Cheng Z, Wan T and Lu L 2023 Interface strain gradient enabled high strength and hardening in laminated nanotwinned CuActa Mater.256119138

[12] [12] Li L L, Zhang Z J, Zhang P, Wang Z G and Zhang Z F 2014 Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundaryNat. Commun.53536

[13] [13] Faraji G, Kim H S and Kashi H T 2018Severe Plastic Deformation: Methods, Processing and Properties. (Elsevier)

[14] [14] An X H, Lin Q Y, Wu S D and Zhang Z F 2010 Microstructural evolution and shear fracture of Cu–16at.%Al alloy induced by equal channel angular pressingMater. Sci. Eng.A5274510–4

[15] [15] Wang Y B, Liao X Z, Zhao Y H, Lavernia E J, Ringer S P, Horita Z, Langdon T G and Zhu Y T 2010 The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsionMater. Sci. Eng.A5274959–66

[16] [16] Wang Het al,2024 Effect of compositional heterogeneity on the mechanical properties of a single-phase Cu-9Al alloy with different grain sizesActa Mater.263119531

[17] [17] Wang Y B, Liao X Z, Zhao Y H, Cooley J C, Horita Z and Zhu Y T 2013 Elemental separation in nanocrystalline Cu-Al alloysAppl. Phys. Lett.102231912

[18] [18] Zhou K X, Zhao Y H, Mao Q Z, Zhang R S, Li S Q, Sun G S, Dong H Z, Gu L and Liu J Z 2024 Simultaneously enhancing strength and ductility of coarse grain Cu–Al alloy via a macro dual-cable structureCompositesB.276111371

[19] [19] Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.1171–19

[20] [20] Cai J and Ye Y Y 1996 Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloysPhys. Rev.B548398–410

[21] [21] LaBerge L J and Tully J C 2000 A rigorous procedure for combining molecular dynamics and Monte Carlo simulation algorithmsChem. Phys.260183–91

[22] [22] Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E and Zepeda-Ruiz L 2012 Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloysPhys. Rev.B85184203

[23] [23] Dullweber A, Leimkuhler B and McLachlan R 1997 Symplectic splitting methods for rigid body molecular dynamicsJ. Chem. Phys.1075840–51

[24] [24] Martyna G J, Tobias D J and Klein M L 1994 Constant pressure molecular dynamics algorithmsJ. Chem. Phys.1014177–89

[25] [25] Hirel P 2015 Atomsk: a tool for manipulating and converting atomic data filesComput. Phys. Commun.197212–9

[26] [26] Stukowski A 2010 Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization ToolModelling Simul. Mater. Sci. Eng.18015012

[27] [27] Rycroft C H 2009 VORO++: a three-dimensional Voronoi cell library in C++Chaos19041111

[28] [28] Stukowski A and Albe K 2010 Extracting dislocations and non-dislocation crystal defects from atomistic simulation dataModelling Simul. Mater. Sci. Eng.18085001

[29] [29] Huang Y, Sabbaghianrad S, Almazrouee A I, Al-Fadhalah K J, Alhajeri S N and Langdon T G 2016 The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsionMater. Sci. Eng.A65655–66

[30] [30] Lu K 2016 Stabilizing nanostructures in metals using grain and twin boundary architecturesNat. Rev. Mater.116019

[31] [31] Koch C C, Scattergood R O, Darling K A and Semones J E 2008 Stabilization of nanocrystalline grain sizes by solute additionsJ. Mater. Sci.437264–72

[32] [32] Zhang Y and Maginn E J 2012 A comparison of methods for melting point calculation using molecular dynamics simulationsJ. Chem. Phys.136144116

[33] [33] Larsen P M, Schmidt S and Schitz J 2016 Robust structural identification via polyhedral template matchingModelling Simul. Mater. Sci. Eng.24055007

[34] [34] Honeycutt J D and Andersen H C 1987 Molecular dynamics study of melting and freezing of small lennard-jones clustersJ. Phys. Chem.914950–63

[35] [35] An X H, Wu S D, Wang Z G and Zhang Z F 2014 Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloysActa Mater.74200–14

[36] [36] An X H, Qu S, Wu S D and Zhang Z F 2011 Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu–Al alloys during thermal annealingJ. Mater. Res.26407–15

[37] [37] Huang C X, Hu W, Yang G, Zhang Z F, Wu S D, Wang Q Y and Gottstein G 2012 The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper–aluminum alloys processed by equal channel angular pressingMater. Sci. Eng.A556638–47

[38] [38] Zhang Y, Tao N R and Lu K 2011 Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformationActa Mater.596048–58

[39] [39] Liu R, Tian Y Z, Zhang Z J, An X H, Zhang P and Zhang Z F 2016 Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain sizeSci. Rep.627433

[40] [40] Tian Y Z, Zhao L J, Park N, Liu R, Zhang P, Zhang Z J, Shibata A, Zhang Z F and Tsuji N 2016 Revealing the deformation mechanisms of Cu–Al alloys with high strength and good ductilityActa Mater.11061–72

[41] [41] Liu R, Tian Y Z, Zhang Z J, Zhang P, An X H and Zhang Z F 2018 Exploring the fatigue strength improvement of Cu-Al alloysActa Mater.144613–26

[42] [42] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N and Langdon T G 2012 Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealingScripta Mater.66227–30

[43] [43] Fang Q and Sansoz F 2017 Influence of intrinsic kink-like defects on screw dislocation–coherent twin boundary interactions in copperActa Mater.123383–93

[44] [44] Hu C Z, Berbenni S, Medlin D L and Dingreville R 2023 Discontinuous segregation patterning across disconnectionsActa Mater.246118724

[45] [45] Han J, Thomas S L and Srolovitz D J 2018 Grain-boundary kinetics: a unified approachProg. Mater. Sci.98386–476

[46] [46] Lejek P, Zheng L, Hofmann S and ob M 2014 Applied thermodynamics: grain boundary segregationEntropy161462–83

[47] [47] Li L, Liu L J and Shibutani Y 2022 Defect interaction summary between edge dislocations and-axis symmetric tilt grain boundaries in copper on activation barriers and critical stressesInt. J. Plast.149103153

[48] [48] Sauvage X, Wilde G, Divinski S V, Horita Z and Valiev R Z 2012 Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomenaMater. Sci. Eng.A5401–12

[49] [49] Cao Y, Ni S, Liao X Z, Song M and Zhu Y T 2018 Structural evolutions of metallic materials processed by severe plastic deformationMater. Sci. Eng.R1331–59

[50] [50] Sun W W, Zhu Y M, Marceau R, Wang L Y, Zhang Q, Gao X and Hutchinson C 2019 Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticityScience363972–975

[51] [51] Porter D A and Easterling K E 2009Phase Transformations in Metals and Alloys (Revised Reprint). 3rd edition. (CRC Press), Boca Raton.

[52] [52] Balluffi R W, Allen S M and Carter W C 2005Kinetics of Materials. (Wiley), Hoboken

[53] [53] Zhou K X, Zhao Y H, Mao Q Z, Zhu B P, Sun G S, Li S Q and Liu J Z 2024 Preparing bulk nanocrystalline Cu–Al alloys via rotary swagingJ. Mater. Process. Technol.330118489

[54] [54] Kunick L, Kocich R, Hervoches C and Machkov A 2017 Study of structure and residual stresses in cold rotary swaged tungsten heavy alloyMater. Sci. Eng.A70425–31

[55] [55] Mao Q Z, Liu Y F and Zhao Y H 2022 A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swagingJ. Alloys Compd.896163122

[56] [56] Anderson P M, Hirth J P and Lothe J 2017Theory of Dislocations.3rd edition. (Cambridge University Press), New York

[57] [57] Zhang N, Gunderov D, Yang T T, Cai X C, Jia P and Shen T D 2019 Influence of alloying elements on the thermal stability of ultra-fine-grained Ni alloysJ. Mater. Sci.5410506–15

[58] [58] Ma E, He J H and Schilling P J 1997 Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-FePhys. Rev.B555542–5

[59] [59] Li Het al,2022 Uniting tensile ductility with ultrahigh strength via composition undulationNature604273–9

[60] [60] Bader M, Eldis G T and Warlimont H 1976 The mechanisms of anneal hardening in Cu-Al alloysMetall. Trans.A7249–55

[61] [61] Miura S and Tajima T 1978 Effect of grain boundaries on anneal hardening in Cu-Al alloyMet. Sci.12183–91

[62] [62] Xu W, Zhang B, Du K, Li X Y and Lu K 2022 Thermally stable nanostructured Al-Mg alloy with relaxed grain boundariesActa Mater.226117640

[63] [63] Zhou X, Li X Y and Lu K 2020 Stabilizing nanograins in metals with grain boundary relaxationScripta Mater.187345–9

[64] [64] Krill I I I C E, Ehrhardt H and Birringer R 2022 Thermodynamic stabilization of nanocrystallinityInt. J. Mater. Res.961134–41

[65] [65] Peng H R, Huang L K and Liu F 2018 A thermo-kinetic correlation for grain growth in nanocrystalline alloysMater. Lett.219276–9

Tools

Get Citation

Copy Citation Text

Zhou Kaixuan, Wang Luling, Zhao Yonghao, Jin Shenbao, Mao Qingzhong, Shi Shaojia, Ma Longlong, Zhang Ruisheng, Liu Jizi. Strong and thermally stable nanocrystalline Cu–Al alloy via Al segregation[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 25101

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Jun. 3, 2024

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad9367

Topics