Journal of Advanced Dielectrics, Volume. 14, Issue 4, 2340005(2024)

Superior energy storage performance of BNT-based ferroelectric ceramics based on maintaining high polarization and breakdown strength

Mingjia Jiang1, Zhanhui Peng1、*, Qiyuan Zhou1, Di Wu1, Lingling Wei2, Pengfei Liang3, Xiaolian Chao1、**, and Zupei Yang1、***
Author Affiliations
  • 1Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi, P. R. China
  • 2School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 Shaanxi, P. R. China
  • 3School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 Shaanxi, P. R. China
  • show less
    References(45)

    [1] R. Xu, Z. Xu, Y. J. Feng, H. L. He, J. J. Tian, D. Huang. Temperature dependence of energy storage in Pb0.90La0.04Ba0.04[(Zr0.7Sn0.3)0.88Ti0.12]O3 antiferroelectric ceramics. J. Am. Ceram. Soc., 99, 2984(2016).

    [2] H. L. Du, Z. T. Yang, F. Gao, L. Jin, H. L. Cheng, S. B. Qu. Lead-free nonlinear dielectric ceramics for energy storage applications: Current status and challenges. J. Inorg. Mater., 33, 1046(2018).

    [3] Y. Tian, L. Jin, Y. Feng, Y. Zhuang, Z. Xu, X. Wei. Progess of antiferroelectric perovskite oxides. Prog. Phys., 37, 155(2017).

    [4] Q. Y. Hu, Y. Tian, Q. S. Zhu, J. H. Bian, L. Jin, H. L. Du, D. O. Alikin, V. Y. Shur, Y. J. Feng, Z. Xu, X. Y. Wei. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1∕2Ti1∕2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy, 67, 104264(2020).

    [5] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, C. S. Hwang. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater., 27, 1811(2015).

    [6] B. C. Luo, X. H. Wang, E. K. Tian, H. Z. Song, H. X. Wang, L. T. Li. Enhanced energy-storage density and high efficiency of lead-free CaTiO3–BiScO3 linear dielectric ceramics. ACS Appl. Mater. Interfaces, 9, 19963(2017).

    [7] Z. N. Yan, D. Zhang, X. F. Zhou, H. Qi, H. Luo, K. C. Zhou, I. Abrahams, H. X. Yan. Silver niobate based lead-free ceramics with high energy storage density. J. Mater. Chem. A, 7, 10702(2019).

    [8] R. Xu, B. R. Li, J. J. Tian, Z. Xu, Y. J. Feng, X. Y. Wei, D. Huang, L. J. Yang. Pb0.94La0.04[(Zr0.70Sn0.30)0.90Ti0.10]O3 antiferroelectric bulk ceramics for pulsed capacitors with high energy and power density. Appl. Phys. Lett., 100, 142902(2017).

    [9] X. T. Zhang, L. L. Zhao, L. W. Liu, Z. A. Zhang, B. Cui. Interface and defect modulation via a core-shell design in (Na0.5Bi0.5TiO3@La2O3)–(SrSn0.2Ti0.8O3@La2O3)–Bi2O3–B2O3–SiO2 composite ceramics for wide-temperature energy storage capacitors. Chem. Eng. J., 435, 135061(2022).

    [10] W. G. Ma, P. Y. Fan, D. Salamon, S. Kongparakul, C. Samart, T. Zhang, G. Z. Zhang, S. L. Jiang, J. J. Chang, H. B. Zhang. Fine-grained BNT-based lead-free composite ceramics with high energy-storage density. Ceram. Int., 45, 19895(2019).

    [11] J. L. Wu, Q. Feng, C. Y. Luo, T. H. Shi, Z. Y. Cen, X. Y. Chen, C. L. Yuan, T. Fujita, N. N. Luo. Effect of introducing Sr2+/Hf4+ on phase structures, bandgaps, and energy storage performance in Bi0.47Na0.47Ba0.06TiO3-based ferroelectric ceramic. Ceram. Int., 49, 18210(2023).

    [12] W. B. Li, D. Zhou, W. F. Liu, J. Z. Su, F. Hussain, D. W. Wang, G. Wang, Z. L. Lu, Q. P. Wang. High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with high efficiency. Chem. Eng. J., 414, 128760(2021).

    [13] L. Zhang, Y. P. Pu, M. Chen, T. C. Wei, X. Peng. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem. Eng. J., 383, 123154(2020).

    [14] W. Wang, L. Y. Zhang, C. Li, D. O. Alikin, V. Y. Shur, X. Y. Wei, F. Gao, H. L. Du, L. Jin. Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3–Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chem. Eng. J., 446, 137389(2022).

    [15] F. Yan, K. W. Huang, T. Jiang, X. F. Zhou, Y. J. Shi, G. L. Ge, B. Shen, J. W. Zhai. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Stor. Mater., 30, 392(2020).

    [16] W. Wang, L. Y. Zhang, W. J. Shi, Y. L. Yang, D. Alikin, V. Shur, Z. H. Lou, D. Wang, A. Zhang, J. H. Gao, X. Y. Wei, H. L. Du, F. Gao, L. Jin. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS Appl. Mater. Interfaces, 15, 6990(2023).

    [17] X. Y. Zhao, W. F. Bai, Y. Q. Ding, L. J. Wang, S. T. Wu, P. Zheng, P. Li, J. W. Zhai. Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc., 40, 4475(2020).

    [18] L. H. Li, M. Li, H. R. Zhang, I. M. Reaney, D. C. Sinclair. Controlling mixed conductivity in Na1∕2Bi1∕2TiO3 using A-site non-stoichiometry and Nb-donor doping. J. Mater. Chem. C, 4, 5779(2016).

    [19] H. Wang, X. L. Jiang, X. Q. Liu, R. N. Yang, Y. Yang, Q. J. Zheng, K. W. Kwok, D. M. Lin. An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO3. Dalton Trans., 48, 17864(2019).

    [20] X. Liu, F. Li, P. Li, J. W. Zhai, B. Shen, B. H. Liu. Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J. Eur. Ceram. Soc., 37, 4585(2017).

    [21] I. T. Seo, S. Steiner, T. Frömling. The effect of A site non-stoichiometry on 0.94(NayBix)TiO3–0.06BaTiO3. J. Eur. Ceram. Soc., 37, 1429(2017).

    [22] J. S. Yun, J. S. Park, K. T. Lee, Y. H. Jeong, J. H. Paik, J. H. Cho. Effects of A-site vacancies and lanthanum aluminate substitution on the dielectric and electromechanical properties of (1−y)Bi0.5+x(Na0.78K0.22)0.5−3xTiO3–yLaAlO3 lead-free ceramics. Ceram. Int., 42, 1015(2016).

    [23] D. Li, D. M. Xu, W. C. Zhao, M. Avdeev, H. M. Jing, Y. Guo, T. Zhou, W. F. Liu, D. Wang, D. Zhou. A high-temperature performing and near-zero energy loss lead-free ceramic capacitor. Energy Environ. Sci., 16, 4511(2023).

    [24] W. F. Bai, L. J. Wang, X. Y. Zhao, P. Zheng, F. Wen, L. L. Li, J. W. Zhai, Z. G. Ji. Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-modified (Bi0.5Na0.5)TiO3 lead-free ceramics. Dalton Trans., 48, 10160(2019).

    [25] X. Liu, S. D. Xue, F. Li, J. P. Ma, J. W. Zhai, B. Shen, F. F. Wang, X. Y. Zhao, H. X. Yan. Giant electrostrain accompanying structural evolution in lead-free NBT-based piezoceramics. J. Mater. Chem. C, 6, 814(2018).

    [26] D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann. Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater., 22, 2285(2012).

    [27] Y. Mendez-González, A. Peláiz-Barranco, A. L. Curcio, A. D. Rodrigues, J. D. S. Guerra. Raman spectroscopy study of the La-modified (Bi0.5Na0.5)0.92Ba0.08TiO3 lead-free ceramic system. J. Raman Spectrosc., 50, 1044(2019).

    [28] J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, G. Lucazeau. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xKx)0.5Bi0.5TiO3 (0≤x≤1) solid solution. J. Phys. Condens. Matter, 12, 3267(2000).

    [29] V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, V. G. Orlov. Raman spectra and lattice dynamics of single-crystal. J. Phys. : Condens. Matter, 9, 4967(1997).

    [30] M. S. Zhang, J. F. Scott, J. A. Zvirgzds. Raman spectroscopy of Na0.5Bi0.5TiO3. Ferroelectr. Lett. Sect., 6, 1563(1986).

    [31] Q. Li, J. Wang, Y. Ma, L. T. Ma, G. Z. Dong, H. Q. Fan. Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3. J. Alloys Compd., 663, 701(2016).

    [32] S. S. Ji, Q. J. Li, D. D. Wang, J. Y. Zhu, M. Zeng, Z. P. Hou, Z. Fan, X. S. Gao, X. B. Lu, Q. L. Li, J. M. Liu. Enhanced energy storage performance and thermal stability in relaxor ferroelectric (1−x)BiFeO3–x(0.85BaTiO3–0.15Bi(Sn0.5Zn0.5)O3) ceramics. J. Am. Ceram. Soc., 104, 2646(2021).

    [33] J. G. Chen, J. R. Cheng. Enhanced thermal stability of lead-free high temperature 0.75BiFeO3−0.25BaTiO3 ceramics with excess Bi content. J. Alloys Compd., 589, 115(2014).

    [34] L. Zhang, Y. P. Pu, M. Chen, T. C. Wei, W. Keipper, R. K. Shi, X. Guo, R. Li, X. Peng. High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc., 40, 71(2020).

    [35] R. Gerson, T. C. Marshall. Dielectric breakdown of porous ceramics. J. Appl. Phys., 30, 1650(2004).

    [36] E. K. Beauchamp. Effect of microstructure on pulse electrical strength of MgO. J. Am. Ceram. Soc., 54, 484(1971).

    [37] L. Zhang, X. Y. Pu, M. Chen, S. S. Bai, Y. P. Pu. Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J. Eur. Ceram. Soc., 38, 2304(2018).

    [38] Y. P. Pu, M. T. Yao, H. R. Liu, T. Frömling. Phase transition behavior, dielectric and ferroelectric properties of (1 −x)(Bi0.5Na0.5)TiO3–xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J. Eur. Ceram. Soc., 36, 2461(2016).

    [39] X. S. Qiao, D. Wu, F. D. Zhang, M. S. Niu, B. Chen, X. M. Zhao, P. F. Liang, L. L. Wei, X. L. Chao, Z. P. Yang. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc., 39, 4778(2019).

    [40] J. G. Hao, Z. J. Xu, R. Q. Chu, W. Li, P. Fu, J. Du, G. R. Li. Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics. J. Eur. Ceram. Soc., 36, 4003(2016).

    [41] J. Yin, X. Lv, J. G. Wu. Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1−zLiz]0.5}0.96Sr0.04(Ti1−x−yTaxNby)O3 lead-free ceramics. Ceram. Int., 43, 13541(2017).

    [42] L. C. Li, M. X. Xu, Q. Zhang, P. Chen, N. Z. Wang, D. K. Xiong, B. L. Peng, L. J. Liu. Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int., 44, 343(2018).

    [43] C. W. Cui, Y. P. Pu, X. Li, Y. F. Cui, G. Liu. High energy storage density of temperature-stable X9R ceramics. Mater. Res. Bull., 105, 114(2018).

    [44] H. B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci. Rep., 7, 8726(2017).

    [45] C. Ang, Z. Yu. High, purely electrostrictive strain in lead-free dielectrics. Adv. Mater., 18, 103(2006).

    Tools

    Get Citation

    Copy Citation Text

    Mingjia Jiang, Zhanhui Peng, Qiyuan Zhou, Di Wu, Lingling Wei, Pengfei Liang, Xiaolian Chao, Zupei Yang. Superior energy storage performance of BNT-based ferroelectric ceramics based on maintaining high polarization and breakdown strength[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2340005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 15, 2023

    Accepted: Nov. 3, 2023

    Published Online: Nov. 5, 2024

    The Author Email: Peng Zhanhui (pzh@snnu.edu.cn), Chao Xiaolian (chaoxl@snnu.edu.cn), Yang Zupei (yangzp@snnu.edu.cn)

    DOI:10.1142/S2010135X23400052

    Topics