Acta Optica Sinica, Volume. 34, Issue s1, 119003(2014)
Continuous Splitting of Dissipative Optical Solitons Based on Complex Ginzburg-Landau Equation with Cubic-Quintic Nonlinearity
[1] [1] I S Aranson, L Kramer. The world of the complex Ginzburg-Landau equation [J]. Rev Mod Phys, 2002, 74(1): 99-143.
[2] [2] Nail Akhmediev, Adrian Ankiewicz. Dissipative Solitons [M]. Berlin, Heidelberg: Springer-Verlag, 2005.
[3] [3] B A Malomed. Complex Ginzburg-Landau equation [J]. Encyclopedia of Nonlinear Science, 2005. 157-160.
[4] [4] V I Petviashvili, A M Sergeev. Spiral solitons in active media with an excitation threshold [C]. Akademia Nauk SSSR, 1984, 276: 1380-1384.
[5] [5] N N Rosanov. Spatial Hysteresis and Optical Patterns [M]. Berlin: Springer, 2002.
[6] [6] P Mandel, M Tlidi. Transverse dynamics in cavity nonlinear optics [J]. J Opt B: Quantum Semiclassical Opt, 2004, 6(9): R60-R75.
[7] [7] N N Rosanov, S V Fedorov, A N Shatsev, et al.. Two-dimensional laser soliton complexes with weak, strong, and mixed coupling [J]. Appl Phys B: Lasers Opt, 2005, 81(7): 937-943.
[8] [8] C O Weiss, Larionova Ye. Pattern formation in optical resonators [J]. Reports on Progress in Physics, 2007, 70(2): 255.
[9] [9] A Ankiewicz, N Devine, N Akhmediev, et al.. Continuously self-focusing and continuously self-defocusing two-dimensional beams in dissipative media [J]. Phys Rev A, 2008, 77(3): 033840.
[10] [10] L-C Crasovan, B A Malomed, D Mihalache, et al.. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation [J]. Phys Rev E, 2000, 63(1): 016605.
[11] [11] A Desyatnikov, A Maimistov, B Malomed. Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity [J]. Phys Rev E, 2000, 61(3): 3107-3113.
[12] [12] L-C Crasovan, B A Malomed, D Mihalache. Erupting, flat-top, and composite spiral solitons in two-dimensional Ginzburg-Landau equation [J]. Phys Lett A, 2001, 289(1): 59-65.
[13] [13] J M Soto-Crespo, N Akhmediev, C Mejia-Cortes, et al.. Dissipative ring solitons with vorticity [J]. Opt Express, 2009, 17(6): 4236-4250.
[14] [14] D V Skryabin, A G Vladimirov. Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation [J]. Phys Rev Lett, 2002, 89(4): 044101.
[15] [15] J M Soto-Crespo, P Grelu, N Akhmediev, et al.. Optical bullets and “rockets” in nonlinear dissipative systems and their transformations and interactions [J]. Opt Express, 2006, 14(9): 4013-4025.
[16] [16] D Mihalache, D Mazilu, F Lederer, et al.. Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation [J]. Phys Rev A, 2007, 75(3): 033811.
[17] [17] A Kamagate, P Grelu, P Tchofo-Dinda, et al.. Stationary and pulsating dissipative light bullets from a collective variable approach [J]. Phys Rev E, 2009, 79(2): 026609.
[18] [18] D Mihalache, D Mazilu, F Lederer, et al.. Collisions between counter-rotating solitary vortices in the three-dimensional Ginzburg-Landau equation [J]. Phys Rev E, 2008, 78(5): 056601.
[19] [19] D Mihalache, D Mazilu, F Lederer, et al.. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation [J]. Phys Rev A, 2008, 77(3): 033817.
[20] [20] Y J He, B A Malomed, H Z Wang, et al.. Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media [J]. Opt Express, 2007, 15(26): 17502-17508.
[21] [21] B Liu, Y J He, Z R Qiu, et al.. Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations [J]. Opt Express, 2009, 17(15): 12203.
[22] [22] B Liu, X D He, S J Li. Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity [J]. Phys Rev E, 2011, 84(5): 056607.
[23] [23] H Leblond, B A Malomed, D Mihalache. Stable vortex solitons in the Ginzburg-Landau model of two-dimensional lasing medium with a transverse grating [J]. Phys Rev A, 2009, 80(3): 033835.
[24] [24] H Sakaguchi, B A Malomed. Two-dimensional dissipative gap solitons [J]. Phys Rev E, 2009, 80(2): 026606.
[25] [25] Y J He, B A Malomed, D Mihalache, et al.. Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential [J]. Opt Lett, 2009, 34(19): 2976-2978.
Get Citation
Copy Citation Text
Liu Bin, Liu Yunfeng, Li Shujing. Continuous Splitting of Dissipative Optical Solitons Based on Complex Ginzburg-Landau Equation with Cubic-Quintic Nonlinearity[J]. Acta Optica Sinica, 2014, 34(s1): 119003
Category: Nonlinear Optics
Received: Jan. 20, 2014
Accepted: --
Published Online: Jun. 30, 2014
The Author Email: Liu Bin (liubin_d@126.com)