Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 3, 378(2023)

Lightweight underwater image enhancement network based on GAN

Hao-xuan LIU1,3, Shan-ling LIN1,3, Zhi-xian LIN1,2,3, Tai-liang GUO2,3, and Jian-pu LIN1,3、*
Author Affiliations
  • 1College of Advanced Manufacturing,Fuzhou University,Quanzhou 362000,China
  • 2College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116,China
  • 3Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350116,China
  • show less
    References(24)

    [7] LI J, SKINNER K, EUSTICE R M et al. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 3, 387-394(2018).

    [10] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J/OL]. arXiv, 1411-1784(2014).

    [22] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv, 2004-10934(2020).

    Tools

    Get Citation

    Copy Citation Text

    Hao-xuan LIU, Shan-ling LIN, Zhi-xian LIN, Tai-liang GUO, Jian-pu LIN. Lightweight underwater image enhancement network based on GAN[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(3): 378

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 24, 2022

    Accepted: --

    Published Online: Apr. 3, 2023

    The Author Email: Jian-pu LIN (ljp@fzu.edu.cn)

    DOI:10.37188/CJLCD.2022-0212

    Topics