Optics and Precision Engineering, Volume. 32, Issue 2, 137(2024)
Study of a consistent assembly system for AFM probes based on beam deflection method
[1] JIA Q F, LIU D M, CAI Y D et al. AFM characterization of physical properties in coal adsorbed with different cations induced by electric pulse fracturing[J]. Fuel, 327, 125247(2022).
[2] DAZZI A, PRATER C B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 117, 5146-5173(2017).
[3] SHEN J, ZHANG D, ZHANG F H et al. AFM tip-sample convolution effects for cylinder protrusions[J]. Applied Surface Science, 422, 482-491(2017).
[4] CHEN J B, XU K. Applications of atomic force microscopy in materials, semiconductors, polymers, and medicine: a minireview[J]. Instrumentation Science & Technology, 48, 667-681(2020).
[5] MAVER U, VELNAR T, GABERŠČEK M et al. Recent progressive use of atomic force microscopy in biomedical applications[J]. TrAC Trends in Analytical Chemistry, 80, 96-111(2016).
[6] SONG J F, ZHOU Y Y, PADTURE N P et al. Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by tomographic atomic force microscopy[J]. Nature Communications, 11, 3308(2020).
[7] HE Y, YAN Y D, GENG Y Q et al. Fabrication of periodic nanostructures using dynamic plowing lithography with the tip of an atomic force microscope[J]. Applied Surface Science, 427, 1076-1083(2018).
[8] HAN W, MATHEW P T, KOLAGATLA S et al. Toward single-atomic-layer lithography on highly oriented pyrolytic graphite surfaces using AFM-based electrochemical etching[J]. Nanomanufacturing and Metrology, 5, 32-38(2022).
[9] ZEMŁA J, DANILKIEWICZ J, ORZECHOWSKA B et al. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues[J]. Seminars in Cell & Developmental Biology, 73, 115-124(2018).
[10] [10] 朱凡, 李颖先, 谭久彬. 高精度激光光束准直系统设计[J]. 光学 精密工程, 2020, 28(4): 817-826.ZHUF, LIY X, TANJ B. Design of high-accuracy laser beam collimation system[J]. Opt. Precision Eng., 2020, 28(4): 817-826.(in Chinese)
[11] [11] 李艳宁, 曾荟燕, 吴森, 等. 一种适用于原位纳米力学测试的AFM测头[J]. 纳米技术与精密工程, 2017, 15(2): 93-99.LIY N, ZENGH Y, WUS, et al. A new AFM head designed for In-situ nano-mechanics measurement[J]. Nanotechnology and Precision Engineering, 2017, 15(2): 93-99.(in Chinese)
[12] FUKUDA S, UCHIHASHI T, ANDO T. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope[J]. The Review of Scientific Instruments, 86(2015).
[13] MIYATA K, USHO S, YAMADA S et al. Separate-type scanner and wideband high-voltage amplifier for atomic-resolution and high-speed atomic force microscopy[J]. The Review of Scientific Instruments, 84(2013).
[14] PARK W S, KIM S H, KIM Y H. Scanning probe microscope and method of operating the same[P].
[15] SRIRAMSHANKAR R, MUTHU MRINALINI RSRI, JAYANTH G R. Design and fabrication of a flexural harmonic AFM probe with an exchangeable tip[J]. Journal of Micro-Bio Robotics, 13, 39-53(2017).
[16] JO H C, LIM H J, SHIN S J et al. Scanning probe microscope with automatic probe replacement function[P].
[17] SADEGHIAN H, BIJNAGTE T, HERFST R et al. Automated cantilever exchange and optical alignment for high-throughput parallel atomic force microscopy[J]. IEEE/ASME Transactions on Mechatronics, 22, 2654-2661(2017).
[18] MUTHU MRINALINI RSRI, JAYANTH G R. A system for replacement and reuse of tips in atomic force microscopy[J]. IEEE/ASME Transactions on Mechatronics, 21, 1943-1953(2016).
[19] VIKRANT K S, HITHIKSHA K, JAYANTH G R. An automated AFM tip-replacement system for
[20] ZANDIATASHBAR A, KIM B, YOO Y K et al. Automated AFM for small-scale and large-scale surface profiling in CMP applications[C], 662-667(2018).
[21] YOO S B, YUN S H, JO A J et al. Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy[J]. Applied Microscopy, 52, 1(2022).
[22] [22] 刘璐, 吴森, 胡晓东, 等. X轴分离式高速原子力显微镜系统设计[J]. 光学 精密工程, 2018, 26(3): 662. doi: 10.3788/ope.20182603.0662LIUL, WUS, HUX D, et al. Design of high-speed atomic force microscope with a separated X-scanner[J]. Opt. Precision Eng., 2018, 26(3): 662.(in Chinese). doi: 10.3788/ope.20182603.0662
[23] LIU L, WU S, PANG H et al. High-speed atomic force microscope with a combined tip-sample scanning architecture[J]. The Review of Scientific Instruments, 90(2019).
[24] [24] 曲章, 武兴盛, 魏久焱, 等. 高灵敏低噪声光束偏转检测系统设计[J]. 微纳电子技术, 2018, 55(5): 359-365, 370. doi: 10.13250/j.cnki.wndz.2018.05.010QUZ, WUX S, WEIJ Y, et al. Design of a low noise optical beam deflection detection system with high sensitivity[J]. Micronanoelectronic Technology, 2018, 55(5): 359-365, 370.(in Chinese). doi: 10.13250/j.cnki.wndz.2018.05.010
[25] TIWARI B, CLÉVY C, LUTZ P. Analysis of Forces During UV Glue Curing for Micro-Assembly Applications[C]. Integration & Packaging of MEMS and MOEMS (DTIP). Paris, 1-6(2019).
[26] [26] 刘海涛, 陈建生, 薛纪东. UV固化胶辐射能量与固化深度的关系[J]. 粘接, 2012, 33(2): 58-60. doi: 10.3969/j.issn.1001-5922.2012.02.012LIUH T, CHENJ S, XUEJ D. Research on relationship of irradiating energy and curing depth for UV curable adhesive[J]. Adhesion, 2012, 33(2): 58-60.(in Chinese). doi: 10.3969/j.issn.1001-5922.2012.02.012
[27] LI D K, ZHANG Y M. Research on factors influencing the positioning accuracy of four-quadrant detector[J]. Journal of Physics: Conference Series, 1983(2021).
[28] SUGIMOTO Y, NAKAJIMA Y, SAWADA D et al. Simultaneous AFM and STM measurements on the Si(111)-(7×7) surface[J]. Physical Review B, 81, 245322(2010).
[29] LI H Q, ZHANG S, ZHANG Z et al. Silicon waveguide integrated with germanium photodetector for a photonic-integrated FBG interrogator[J]. Nanomaterials, 10, 1683(2020).
Get Citation
Copy Citation Text
Baoliang ZHANG, Wenfeng LIANG, Tie YANG, Peng YU. Study of a consistent assembly system for AFM probes based on beam deflection method[J]. Optics and Precision Engineering, 2024, 32(2): 137
Category:
Received: May. 10, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: Peng YU (yupeng@sia.cn)