Chinese Journal of Cancer Biotherapy, Volume. 32, Issue 7, 771(2025)
Research progress of tumor-associated macrophages in lung cancer immunotherapy
[1] [1] BRAY F, LAVERSANNE M, SUNG H,et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2024, 74(3): 229-263. DOI:10.3322/caac.21834.
[2] [2] XIA C F, DONG X S, LI H,et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022,135(5): 584-590. DOI:10.1097/CM9.0000000000002108.
[3] [3] LAHIRI A, MAJI A, POTDAR P D,et al. Lung cancer immunotherapy: progress, pitfalls, and promises[J]. Mol Cancer, 2023, 22(1): 40[2025-01-08]. DOI:10.1186/s12943-023-01740-y.
[4] [4] BRAHMER J R, LEE J S, CIULEANU T E,et al. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non-small-cell lung cancer in CheckMate 227[J]. J Clin Oncol, 2023, 41(6): 1200-1212. DOI:10.1200/JCO.22.01503.
[5] [5] LEFLER D S, MANOBIANCO S A, BASHIR B. Immunotherapy resistance in solid tumors: mechanisms and potential solutions[J/OL]. Cancer Biol Ther, 2024, 25(1): 2315655[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/38389121/. DOI:10.1080/15384047.2024.2315655.
[6] [6] SUN N Y, CHEN Y L, WU W Y,et al. Blockade of PD-L1 enhances cancer immunotherapy by regulating dendritic cell maturation and macrophage polarization[J/OL]. Cancers, 2019, 11(9): 1400[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/31546897/. DOI:10.3390/cancers11091400.
[7] [7] PERANZONI E, LEMOINE J, VIMEUX L,et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment[J]. Proc Natl Acad Sci USA, 2018,115(17): E4041-E4050. DOI:10.1073/pnas.1720948115.
[8] [8] ZHANG Q D, SIOUD M. Tumor-associated macrophage subsets: shaping polarization and targeting[J/OL]. Int J Mol Sci, 2023, 24(8):7493[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/37108657/. DOI:10.3390/ijms24087493.
[9] [9] ZHU S Y, LUO Z Y, LI X X,et al. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications[J]. J Cancer,2021, 12(1): 54-64. DOI:10.7150/jca.49692.
[12] [12] MANTOVANI A, MARCHESI F, MALESCI A,et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. DOI:10.1038/nrclinonc.2016.217.
[13] [13] LI X L, LIU R, SU X,et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J/OL]. Mol Cancer,2019, 18(1): 177[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/31805946/. DOI:10.1186/s12943-019-1102-3.
[14] [14] BASAK U, SARKAR T, MUKHERJEE S,et al. Tumor-associated macrophages: an effective player of the tumor microenvironment[J]. Front Immunol, 2023, 14: 1295257. DOI:10.3389/fimmu.2023.1295257.
[15] [15] MA H Y, ZHANG Z W, HU Q,et al. Shedding light on macrophage immunotherapy in lung cancer[J]. J Cancer Res Clin Oncol, 2023,149(10): 8143-8152. DOI:10.1007/s00432-023-04740-z.
[16] [16] ZHANG H, LIU L, LIU J,et al. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers[J]. Mol Cancer,2023, 22(1): 58. DOI:10.1186/s12943-023-01725-x.
[17] [17] HU J M, LIU K, LIU J H,et al. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis[J]. Exp Mol Pathol, 2017, 102(1): 15-21. DOI:10.1016/j.yexmp.2016.12.001.
[18] [18] YANG L, DONG Y, LI Y J,et al. IL-10 derived from M2 macrophage promotes cancer stemnessviaJAK1/STAT1/NF-B/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer,2019, 145(4): 1099-1110. DOI:10.1002/ijc.32151.
[19] [19] LAOUI D, VAN OVERMEIRE E, DI CONZA G,et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population[J]. Cancer Res, 2014, 74(1): 24-30. DOI:10.1158/0008-5472.CAN-13-1196.
[20] [20] WANG R, ZHANG J, CHEN S F,et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression[J]. Lung Cancer, 2011, 74(2):188-196. DOI:10.1016/j.lungcan.2011.04.009.
[21] [21] CASSETTA L, KITAMURA T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors[J/OL]. Front Cell Dev Biol, 2018, 6: 38[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/29670880/. DOI:10.3389/fcell.2018.00038.
[22] [22] LIU Y T, ZUGAZAGOITIA J, AHMED F S,et al. Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy[J]. Clin Cancer Res,2020, 26(4): 970-977. DOI:10.1158/1078-0432.CCR-19-1040.
[23] [23] LI Y, LIU H L, ZHAO Y J,et al. Tumor-associated macrophages(TAMs)-derived osteopontin (OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC)[J]. Thorac Cancer, 2021, 12(20): 2698-2709. DOI:10.1111/1759-7714.14108.
[24] [24] ZHANG Y, DU W W, CHEN Z L,et al. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma[J]. Exp Cell Res, 2017, 359(2): 449-457. DOI:10.1016/j.yexcr.2017.08.028.
[25] [25] SEPESI B, CUENTAS E P, CANALES J R,et al. Programmed death cell ligand 1 (PD-L1) is associated with survival in stage Ⅰ non-small cell lung cancer[J]. Semin Thorac Cardiovasc Surg,2017, 29(3): 408-415. DOI:10.1053/j.semtcvs.2017.05.008.
[26] [26] ZHANG B C, YAO G Q, ZHANG Y F,et al. M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma[J]. Clinics, 2011, 66(11): 1879-1886. DOI:10.1590/s1807-59322011001100006.
[27] [27] SUMITOMO R, HIRAI T, FUJITA M,et al. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer[J]. Exp Ther Med, 2019, 18(6): 4490-4498. DOI:10.3892/etm.2019.8068.
[28] [28] JACKUTE J, ZEMAITIS M, PRANYS D,et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer[J/OL]. BMC Immunol,2018, 19(1): 3[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/29361917/. DOI:10.1186/s12865-018-0241-4.
[29] [29] YANG H, ZHANG Q N, XU M,et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J/OL]. Mol Cancer,2020, 19(1): 41[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/32103760/. DOI:10.1186/s12943-020-01165-x.
[30] [30] GERAGHTY T, RAJAGOPALAN A, ASLAM R,et al. Positive allosteric modulation of CD11b as a novel therapeutic strategy against lung cancer[J/OL]. Front Oncol, 2020, 10: 748[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/32528880/. DOI:10.3389/fonc.2020.00748.
[31] [31] WEISKOPF K. Cancer immunotherapy targeting the CD47/SIRP axis[J]. Eur J Cancer, 2017, 76: 100-109. DOI:10.1016/j.ejca.2017.02.013.
[32] [32] ZHANG X Y, WANG Y C, FAN J J,et al. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer[J/OL]. J Immunother Cancer, 2019, 7(1): 346[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/31829270/. DOI:10.1186/s40425-019-0812-9.
[33] [33] CABRALES P. RRx-001 acts as a dual small molecule checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP- on monocytes/macrophages[J]. Transl Oncol, 2019, 12(4): 626-632. DOI:10.1016/j.tranon.2018.12.001.
[34] [34] LIU S L, SU L F, MU X R,et al. Apatinib inhibits macrophage-mediated epithelial-mesenchymal transition in lung cancer[J]. RSC Adv, 2018, 8(38): 21451-21459. DOI:10.1039/C8RA01231H.
[35] [35] ZHAO S, REN S X, JIANG T,et al. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer[J]. Cancer Immunol Res, 2019, 7(4): 630-643. DOI:10.1158/2326-6066.CIR-17-0640.
[36] [36] LIU M, TONG Z, DING C L,et al. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer[J]. J Clin Invest, 2020, 130(4): 2081-2096. DOI:10.1172/JCI131335.
[37] [37] YANG S X, WANG Y H, JIA J C,et al. Advances in engineered macrophages: a new frontier in cancer immunotherapy[J]. Cell Death Dis, 2024, 15(4): 238. DOI:10.1038/s41419-024-06616-7.
[38] [38] KLICHINSKY M, RUELLA M, SHESTOVA O,et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38(8): 947-953. DOI:10.1038/s41587-020-0462-y.
[39] [39] ALVEY C M, SPINLER K R, IRIANTO J,et al. SIRPA-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors[J]. Curr Biol, 2017, 27(14): 2065-2077.e6. DOI:10.1016/j.cub.2017.06.005.
[40] [40] LU Q L, CHEN R Y, ZENG F,et al. Inhalation of bioorthogonal geneeditable spiky-pollen reprograms tumor-associated macrophages for lung cancer immunotherapy[J/OL]. Adv Funct Materials, 2024, 34(48):2408767[2025-01-08]. https://doi.org/10.1002/adfm.202408767. DOI:10.1002/adfm.202408767.
[41] [41] FENG X Q, LAI X Y, ZHOU M M,et al. Targeting HLA-E in lung cancer: the therapeutic potential of IRF5-engineered M1-macrophage-derived exosomes[J/OL]. Clin Respir J, 2024, 18(12):e70035[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/39623605/. DOI:10.1111/crj.70035.
[42] [42] YAN J N, ZHU J L, LI X L,et al. Blocking LTB4 signaling-mediated TAMs recruitment by Rhizoma Coptidis sensitizes lung cancer to immunotherapy[J/OL]. Phytomedicine, 2023, 119: 154968[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/37531900/. DOI:10.1016/j.phymed.2023.154968.
[43] [43] LEE C Y, SHER H F, CHEN H W,et al. Anticancer effects of tanshinone I in human non-small cell lung cancer[J]. Mol Cancer Ther, 2008, 7(11): 3527-3538. DOI:10.1158/1535-7163.mct-07-2288.
[44] [44] WU C Y, CHERNG J Y, YANG Y H,et al. Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells[J]. Oncotarget, 2017, 8(53): 90925-90947. DOI:10.18632/oncotarget.18767.
[45] [45] ZHANG D D, WANG Z Y, LI J,et al. Exploring the possible molecular targeting mechanism ofSaussureainvolucrata in the treatment of COVID-19 based on bioinformatics and network pharmacology[J/OL]. Comput Biol Med, 2022, 146: 105549[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/35751193/. DOI:10.1016/j.compbiomed.2022.105549.
[46] [46] WANG W J, WU Y S, CHEN S,et al. Mushroom -glucan may immunomodulate the tumor-associated macrophages in the lewis lung carcinoma[J/OL]. Biomed Res Int, 2015, 2015: 604385[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/26167490/. DOI:10.1155/2015/604385.
[47] [47] COTTRELL T R, THOMPSON E D, FORDE P M,et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC)[J]. Ann Oncol, 2018, 29(8):1853-1860. DOI:10.1093/annonc/mdy218.
[48] [48] LI Z W, GUO M Z, LIN W L,et al. Machine learning-based integration develops a macrophage-related index for predicting prognosis and immunotherapy response in lung adenocarcinoma[J/OL]. Arch Med Res, 2023, 54(7): 102897[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/37865004/. DOI:10.1016/j.arcmed.2023.102897.
[49] [49] SONG P, WUSIMAN D, LI W B,et al. Validating a macrophage marker gene signature (MMGS) in lung adenocarcinoma prognosis and response to immunotherapy[J]. J Immunother, 2023, 46(6): 205-215. DOI:10.1097/CJI.0000000000000477.
[50] [50] ZHANG H Y, LIU Z L, WEN H Y,et al. Immunosuppressive TREM2(+) macrophages are associated with undesirable prognosis and responses to anti-PD-1 immunotherapy in non-small cell lung cancer[J]. Cancer Immunol Immunother, 2022, 71(10): 2511-2522. DOI:10.1007/s00262-022-03173-w.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Research progress of tumor-associated macrophages in lung cancer immunotherapy[J]. Chinese Journal of Cancer Biotherapy, 2025, 32(7): 771
Category:
Received: Jan. 6, 2025
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: