Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 5, 1888(2025)

Research on Adsorption Performance of Acid Modified Palygorskite for Cu2+

WU Limei1, LUAN Yi1, WANG Xiaolong2, TANG Ning1, LI Ganning1, and LEI Xinyu1
Author Affiliations
  • 1School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • 2School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • show less
    References(34)

    [1] [1] SVESHNIKOVA D A, SULEIMANOV S I, RABADANOVA D I, et al. Adsorption of copper from aqueous solutions by activated carbon prepared from peach wood[J]. Journal of the Iranian Chemical Society, 2022, 19(7): 3205-3214.

    [2] [2] VARDHAN K H, KUMAR P S, PANDA R C. Adsorption of copper ions from polluted water using biochar derived from waste renewable resources: static and dynamic analysis[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(16): 4067-4088.

    [3] [3] ELFEGHE S, ANWAR S, JAMES L, et al. Adsorption of Cu(II) ions from aqueous solutions using ion exchange resins with different functional groups[J]. The Canadian Journal of Chemical Engineering, 2023, 101(4): 2128-2138.

    [4] [4] ISMAIL M, JOBARA A, BEKOUCHE H, et al. Impact of Cu ions removal onto MgO nanostructures: adsorption capacity and mechanism[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(15): 12500-12512.

    [5] [5] YANG C H, GAO R J, YANG H M. Application of layered nanoclay in electrochemical energy: current status and future[J]. EnergyChem, 2021, 3(5): 100062.

    [6] [6] LU Y S, DONG W K, WANG W B, et al. A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments[J]. Applied Clay Science, 2019, 167: 50-59.

    [7] [7] YANG K, CHEN K F, JI H, et al. Experimental study on the inhibition of methane/air explosion by modified attapulgite powder[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104574.

    [8] [8] GIONIS V. On the structure of palygorskite by mid- and near-infrared spectroscopy[J]. American Mineralogist, 2006, 91(7): 1125-1133.

    [9] [9] SUREZ M, GARCA-ROMERO E, SNCHEZ DEL RO M, et al. The effect of the octahedral cations on the dimensions of the palygorskite cell[J]. Clay Minerals, 2007, 42(3): 287-297.

    [10] [10] GUGGENHEIM S, KREKELER M P S. The structures and microtextures of the palygorskite-sepiolite group minerals[M]//Developments in Palygorskite-Sepiolite Research. Amsterdam: Elsevier, 2011: 3-32.

    [11] [11] GARCA-RIVAS J, SNCHEZ DEL RO M, GARCA-ROMERO E, et al. An insight in the structure of a palygorskite from palygorskaja: some questions on the standard model[J]. Applied Clay Science, 2017, 148: 39-47.

    [12] [12] MYRIAM M, SUREZ M, MARTN-POZAS J M. Structural and textural modifications of palygorskite and sepiolite under acid treatment[J]. Clays and Clay Minerals, 1998, 46(3): 225-231.

    [14] [14] SONI V K, ROY T, DHARA S, et al. On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation[J]. Journal of Materials Science, 2018, 53(14): 10095-10110.

    [16] [16] MARTNEZ-LUVANOS A, RODRGUEZ-DELGADO M G, URIBE-SALAS A, et al. Leaching kinetics of iron from low grade kaolin by oxalic acid solutions[J]. Applied Clay Science, 2011, 51(4): 473-477.

    [17] [17] ROZALEN M, HUERTAS F J. Comparative effect of chrysotile leaching in nitric, sulfuric and oxalic acids at room temperature[J]. Chemical Geology, 2013, 352: 134-142.

    [18] [18] ZHANG Z F, WANG W B, KANG Y R, et al. Tailoring the properties of palygorskite by various organic acids via a one-pot hydrothermal process: a comparative study for removal of toxic dyes[J]. Applied Clay Science, 2016, 120: 28-39.

    [20] [20] CORMA A, MIFSUD A, SANZ E. Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations[J]. 1987, 22(2): 225-232.

    [21] [21] LU Y S, WANG W B, WANG Q, et al. Effect of oxalic acid-leaching levels on structure, color and physico-chemical features of palygorskite[J]. Applied Clay Science, 2019, 183: 105301.

    [23] [23] GUO N, WANG J S, LI J, et al. Dynamic adsorption of Cd2+ onto acid-modified attapulgite from aqueous solution[J]. Clays and Clay Minerals, 2014, 62(5): 415-424.

    [24] [24] LEE S, ANDERSON P R, BUNKER G B, et al. EXAFS study of Zn sorption mechanisms on montmorillonite[J]. Environmental Science & Technology, 2004, 38(20): 5426-5432.

    [25] [25] SUN Y B, LI J X, WANG X K. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques[J]. Geochimica et Cosmochimica Acta, 2014, 140: 621-643.

    [27] [27] AYUSO E A, SANCHEZ A G. Removal of cadmium from aqueous solutions by palygorskite[J]. Journal of Hazardous Materials, 2007, 147(1/2): 594-600.

    [29] [29] ZAGHOUANE-BOUDIAF H, BOUTAHALA M, SAHNOUN S, et al. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2, 4, 5-trichlorophenol[J]. Applied Clay Science, 2014, 90: 81-87.

    [30] [30] TOOR M, JIN B. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye[J]. Chemical Engineering Journal, 2012, 187: 79-88.

    [32] [32] XU L, LIU Y N, WANG J G, et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: kinetic, thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404: 124140.

    [33] [33] AUGSBURGER M S, STRASSER E, PERINO E, et al. FTIR and mssbauer investigation of a substituted palygorskite: silicate with a channel structure[J]. Journal of Physics and Chemistry of Solids, 1998, 59(2): 175-180.

    [34] [34] ARAJO MELO D M, RUIZ J A C, MELO M A F, et al. Preparation and characterization of terbium palygorskite clay as acid catalyst[J]. Microporous and Mesoporous Materials, 2000, 38(2/3): 345-349.

    [35] [35] FROST R L, CASH G A, KLOPROGGE J T. ‘Rocky Mountain leather’, sepiolite and attapulgite: an infrared emission spectroscopic study[J]. Vibrational Spectroscopy, 1998, 16(2): 173-184.

    [36] [36] SUREZ M, GARCA-ROMERO E. FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet[J]. Applied Clay Science, 2006, 31(1/2): 154-163.

    [37] [37] BARRIOS M S, FLORES GONZLEZ L V, VICENTE RODRGUEZ M A, et al. Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties[J]. Applied Clay Science, 1995, 10(3): 247-258.

    [38] [38] XU J X, WANG W B, WANG A Q. Effects of solvent treatment and high-pressure homogenization process on dispersion properties of palygorskite[J]. Powder Technology, 2013, 235: 652-660.

    [41] [41] KOMADEL P. Acid activated clays: materials in continuous demand[J]. Applied Clay Science, 2016, 131: 84-99.

    [42] [42] WANG W B, DONG W K, TIAN G Y, et al. Highly efficient self-template synthesis of porous silica nanorods from natural palygorskite[J]. Powder Technology, 2019, 354: 1-10.

    [44] [44] KUMAR S, PANDA A K, SINGH R K. Preparation and characterization of acid and alkaline treated kaolin clay[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2013, 8(1): 61-69.

    Tools

    Get Citation

    Copy Citation Text

    WU Limei, LUAN Yi, WANG Xiaolong, TANG Ning, LI Ganning, LEI Xinyu. Research on Adsorption Performance of Acid Modified Palygorskite for Cu2+[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(5): 1888

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 31, 2024

    Accepted: Jun. 12, 2025

    Published Online: Jun. 12, 2025

    The Author Email:

    DOI:10.16552/j.cnki.issn1001-1625.2024.1306

    Topics