Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610005(2023)

Application of a Lightweight Convolutional Neural Network in Ship Classification

Wenliang Wang, Xiaodi Yang*, Boya Zhang, Jishun Ma, Peng Zeng, and Peng Han
Author Affiliations
  • CSSC (Zhejiang) Ocean Technology Co., Ltd., Zhoushan 316000, Zhejiang, China
  • show less
    Figures & Tables(13)
    Ghost module
    Ghost bottleneck module. (a) Bottleneck module with a step size of 1; (b) bottleneck module with a step size of 2
    ACNet module
    Asymmetric Ghost module
    Asymmetric Ghost bottleneck module. (a) Bottleneck module with a step size of 1; (b) bottleneck module with a step size of 2
    Comparison of the overall structure of each network
    Comparison curve of test set precision
    Comparison curve of test set loss value
    • Table 1. Detail parameters of AGNet

      View table

      Table 1. Detail parameters of AGNet

      InputOperatorExpOutSEStride
      2242×3Conv 2d 3×3-8-2
      1122×8AG-bneck88-1
      1122×8AG-bneck2412-2
      562×12AG-bneck3612-1
      562×12AG-bneck362012
      282×20AG-bneck602011
      282×20AG-bneck12040-2
      142×40AG-bneck10040-1
      142×40AG-bneck9240-1
      142×40AG-bneck9240-1
      142×40AG-bneck2405611
      142×56AG-bneck3365611
      142×56AG-bneck3368012
      72×80AG-bneck48080-1
      72×80AG-bneck4808011
      72×80AG-bneck48080-1
      72×80AG-bneck4808011
      72×80Conv 2d 1×1-480-1
      72×480AvgPool 7×7----
      12×480FC-classes--
    • Table 2. Information table of sample set

      View table

      Table 2. Information table of sample set

      IDClassTrain_setTest_set
      15470104
      2332938636
      3594408986
    • Table 3. Comparison of each network evaluation indicators

      View table

      Table 3. Comparison of each network evaluation indicators

      ModelMultiply-accumulate operations /106Parameters /106Accuracy /%Speed /(frame·s-1
      AGNet49.350.7293.8747.76
      AGNet-large49.971.3692.5041.79
      GhostNet-5045.841.3590.9443.61
      GhostNet-50-small45.220.7192.0350.13
    • Table 4. Comparison of each network performance

      View table

      Table 4. Comparison of each network performance

      ModelMultiply-accumulate operations /106Parameters /106Accuracy /%Speed /(frame·s-1
      AGNet49.350.7393.5546.93
      AGNet-large49.971.3990.3241.24
      GhostNet-5045.841.3887.6042.97
      GhostNet-50-small45.220.7292.9449.64
    • Table 5. Comparison results of different classification networks

      View table

      Table 5. Comparison results of different classification networks

      ModelMultiply-accumulate operations /106Parameters /106Accuracy /%
      MobileNetv3-small-1002470.062.5487.81
      ResNet1811821.6611.6989.84
      DPN-68b262338.5512.6191.87
      RegNetx-00227200.692.6889.53
      GhostNet-502345.841.3592.50
      AGNet49.350.7293.87
    Tools

    Get Citation

    Copy Citation Text

    Wenliang Wang, Xiaodi Yang, Boya Zhang, Jishun Ma, Peng Zeng, Peng Han. Application of a Lightweight Convolutional Neural Network in Ship Classification[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 23, 2021

    Accepted: Jan. 17, 2022

    Published Online: Mar. 7, 2023

    The Author Email: Xiaodi Yang (1755018902@qq.com)

    DOI:10.3788/LOP213033

    Topics