Chinese Optics, Volume. 18, Issue 1, 89(2025)

Improved AO optimization algorithm for distortion parameter estimation of catadioptric omnidirectional lens

Yue ZHANG, Ning ZHANG*, and Xi-ping XU*
Author Affiliations
  • School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(19)
    Schematic diagram of imaging for catadioptric omnidirectional camera
    Schematic diagram of unified spherical projection model
    Distribution curve of image point
    Flow chart of distortion parameters solution
    Benchmark function graphs and comparison of algorithm convergence curves
    Boxplot of the results of the distortion principal point estimation.
    Synthetic images and their corrected images
    Error level for sound level changes
    Two types of catadioptric omnidirectional camera
    Omnidirectional images and their corrected images
    • Table 1. Parameters setting

      View table
      View in Article

      Table 1. Parameters setting

      算法参数设置
      GWO[26]a was linearly decreased from 2 to 0, rate=3
      WOA[27]α decreased from 2 to 0, b=1
      HHO[28]t=0
      ALO[29]I ratio=10ω, ω=[2,6]
      AO[18]S=1.5, r1 take a fixed index between 1 and 20, G2 decreased from 2 to 0
    • Table 2. Benchmark function

      View table
      View in Article

      Table 2. Benchmark function

      函数序号函数名称维度范围最优值
      F1Sphere30[−100,100]0
      F2Schwefel 2.2230[−10,10]0
      F3Schwefel 1.230[−100,100]0
      F4Schwefel 2.2130[−100,100]0
      F5Ackley10[−32,32]0
      F6Generalized Penalized30[−50,50]0
      F7Shekel's Foxholes2[−65.536,65.536]1
      F8Six-Hump Camel-Back4[−5,5]1.0316
      F9Goldstein-Price2[−2,2]3
      F10Shekel's Family4[0,1]10.4028
    • Table 3. Optimization results of different algorithms for benchmark functions

      View table
      View in Article

      Table 3. Optimization results of different algorithms for benchmark functions

      函数GWOWOAHHOALOAOImproved AO
      F1AVG1.40×10−1277.91×10−1214.76×10−1172.67×10−103.71×10−1743.95×10−323
      STD6.08×10−1272.45×10−1202.21×10−1161.24×10−100.000.00
      Best5.36×10−1351.12×10−1272.56×10−1299.62×10−119.38×10−1820.00
      F2AVG2.31×10−714.86×10−666.93×10−651.94×10−57.45×10−885.37×10−166
      STD6.58×10−712.58×10−652.29×10−644.16×10−52.29×10−870.00
      Best3.10×10−746.20×10−731.69×10−755.99×10−64.82×10−941.17×10−174
      F3AVG2.76×10−671.17×10−22.11×10−1062.53×10−91.13×10−1700.00
      STD6.84×10−672.78×10−21.16×10−1051.27×10−90.000.00
      Best1.91×10−743.49×10−61.89×10−1233.96×10−105.12×10−1810.00
      F4AVG6.10×10−442.27×10−92.90×10−581.54×10−56.46×10−888.25×10−166
      STD1.49×10−437.34×10−91.11×10−572.98×10−62.33×10−870.00
      Best1.01×10−473.01×10−251.68×10−641.06×10−57.89×10−952.23×10−182
      F5AVG4.00×10−152.46×10−154.44×10−165.49×10−24.44×10−164.44×10−16
      STD0.002.02×10−150.003.01×10−10.000.00
      Best4.00×10−154.44×10−164.44×10−163.63×10−64.44×10−164.44×10−16
      F6AVG3.003.39×10−24.18×10−72.16×1021.44×10−72.37×10−4
      STD4.72×10−13.06×10−26.39×10−71.72×1012.16×10−74.32×10−4
      Best2.089.24×10−31.19×10−111.83×1024.47×10−111.18×10−8
      F7AVG9.98×10−19.98×10−19.98×10−19.98×10−19.98×10−19.98×10−1
      STD1.13×10−118.48×10−151.04×10−152.31×10−168.48×10−113.92×10−9
      Best9.98×10−19.98×10−19.98×10−19.98×10−19.98×10−19.98×10−1
      F8AVG−1.03−1.03−1.03−1.03−1.03−1.03
      STD1.01×10−97.23×10−154.25×10−168.87×10−155.38×10−62.44×10−4
      Best−1.03−1.03−1.03−1.03−1.03−1.03
      F9AVG2.993.002.982.983.003.00
      STD1.71×10−71.00×10−93.01×10−144.99×10−143.24×10−46.16×10−15
      Best2.993.002.982.983.003.00
      F10AVG−1.02×101−1.04×101−6.86−9.35−1.04×101−1.04×101
      STD9.70×10−18.75×10−72.552.155.73×10−53.22×10−2
      Best−1.04×101−1.04×101−1.04×101−1.04×101−1.04×101−1.04×101
    • Table 4. Wilcoxon rank sum test result

      View table
      View in Article

      Table 4. Wilcoxon rank sum test result

      对比算法单峰函数多峰函数固定维数多峰函数
      Improved AO vs. GWO6.39×10−42.86×10−21.19×10−2
      Improved AO vs. WOA2.48×10−46.43×10−27.80×10−3
      Improved AO vs. HHO1.55×10−36.26×10−23.97×10−3
      Improved AO vs. ALO1.00×10−52.86×10−27.80×10−3
      Improved AO vs. AO9.58×10−37.62×10−25.69×10−2
    • Table 5. Sensitivity analysis of the improved AO for the number of population members (N)

      View table
      View in Article

      Table 5. Sensitivity analysis of the improved AO for the number of population members (N)

      函数种群数量值
      100200300400
      F10.000.000.000.00
      F25.13×10−1671.16×10−1677.23×10−1713.09×10−176
      F30.000.000.000.00
      F43.87×10−1813.87×10−1875.83×10−1950.00
      F54.44×10−164.44×10−163.45×10−181.12×10−21
      F61.49×10−51.35×10−62.58×10−62.33×10−7
      F79.98×10−19.98×10−19.98×10−19.98×10−1
      F8−1.03−1.03−1.03−1.03
      F93.023.023.013.01
      F10−1.04×10−1−1.04×10−1−1.04×10−1−1.04×10−1
    • Table 6. Sensitivity analysis of the improved AO for the number of iterations (T)

      View table
      View in Article

      Table 6. Sensitivity analysis of the improved AO for the number of iterations (T)

      函数最大迭代次数
      200400600800
      F11.68×10−2250.000.000.00
      F25.67×10−1083.64×10−1451.52×10−1676.26×10−170
      F32.28×10−2170.000.000.00
      F45.91×10−1095.61×10−1595.85×10−1652.99×10−168
      F54.44×10−164.44×10−163.25×10−171.93×10−17
      F63.93×10−51.79×10−51.45×10−69.95×10−7
      F79.98×10−19.98×10−19.98×10−19.98×10−1
      F8−1.03−1.03−1.03−1.03
      F93.013.013.013.01
      F10−1.04×10−1−1.04×10−1−1.04×10−1−1.04×10−1
    • Table 7. Radial distortion parameter estimation results

      View table
      View in Article

      Table 7. Radial distortion parameter estimation results

      序列Ref [8]Ref [11]Ref [12]Ours
      (a)−1.03×10−5−1.01×10−5−1.01×10−5−1.01×10−5
      (b)−1.02×10−6−1.02×10−6−1.02×10−6−1.02×10−6
      (c)−1.05×10−7−0.96×10−7−0.97×10−7−1.02×10−7
      (d)−1.07×10−8−1.04×10−8−1.04×10−8−1.02×10−8
      (e)−1.02×10−6−1.03×10−6−1.01×10−6−1.01×10−6
      (f)−1.02×10−5−1.01×10−5−1.01×10−5−1.01×10−5
    • Table 8. Estimation error of the distortion parameter

      View table
      View in Article

      Table 8. Estimation error of the distortion parameter

      方法D/(pixel)R(%)
      (a)(b)(c)(d)(e)(f)
      Ref [8]1.24123.22.85.17.02.52.3
      Ref [11]0.84301.52.84.64.33.01.5
      Ref [12]0.67621.22.63.24.31.31.2
      Ours0.46181.22.42.22.21.51.2
    • Table 9. Omnidirectional image distortion parameter estimation results

      View table
      View in Article

      Table 9. Omnidirectional image distortion parameter estimation results

      序列图像大小畸变参数畸变中心
      10 (a)$2\;048 \times 1\;536$2.2613×10−6(1091.72,695.14)
      10 (b)$2\;048 \times 1\;536$2.1983×10−6(1095.62,692.57)
      10 (c)$2\;048 \times 1\;536$2.3564×10−6(1096.34,695.83)
      10 (d)$2\;048 \times 1\;536$2.2083×10−6(1094.61,696.53)
      10 (e)$4\;352 \times 3\;264$3.2517×10−6(517.86,382.15)
      10 (f)$4\;352 \times 3\;264$2.8476×10−6(516.43,380.93)
    Tools

    Get Citation

    Copy Citation Text

    Yue ZHANG, Ning ZHANG, Xi-ping XU. Improved AO optimization algorithm for distortion parameter estimation of catadioptric omnidirectional lens[J]. Chinese Optics, 2025, 18(1): 89

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 27, 2024

    Accepted: Sep. 4, 2024

    Published Online: Mar. 14, 2025

    The Author Email:

    DOI:10.37188/CO.2024-0118

    Topics