Chinese Journal of Lasers, Volume. 51, Issue 19, 1901001(2024)

Research Progress on High Power and High Energy Pulsed Single‐Frequency Fiber Laser Amplifiers (Invited)

Shijie Fu1,2, Haichen Xu1,2, Hao Tian1,2, Quan Sheng1,2, Junxiang Zhang1,2, Peiheng Jiang1,2, Wei Shi1,2、*, and Jianquan Yao1,2
Author Affiliations
  • 1School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronics Information Technology,Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    References(76)

    [2] Lafon R E, Merrit S, Allan G et al. High-peak power fiber amplifier for deep space laser communications[J]. Proceedings of SPIE, 10524, 105241C(2018).

    [3] Zhang Z T, Yu H H, Chen S et al. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals[J]. Advanced Photonics Nexus, 3, 026012(2024).

    [4] Ishii S, Okamoto K, Okamoto H et al. Future space-based coherent Doppler wind lidar for global wind profile observation[M]. Springer aerospace technology, 37-46(2024).

    [13] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2009).

    [16] Kotov L V, Bubnov M M, Lipatov D S et al. Double-clad large mode area Er-doped fiber for high-energy and high-peak power amplifiers[J]. Proceedings of SPIE, 8961, 89611L(2014).

    [17] Kotov L V, Likhachev M E, Bubnov M M et al. Record-peak-power all-fiber single-frequency 1550 nm laser[J]. Laser Physics Letters, 11, 095102(2014).

    [23] Milanese D, Lousteau J, Zhu X S et al. Nonsilica oxide glass fiber laser sources: part I[M]. Advances in glass science and technology(2018).

    [24] Zhang F T, Ma L, Zeng Y J et al. Upconversion luminescence properties of Yb3+/Tm3+Co-doped phosphate glass[J]. Laser & Optoelectronics Progress, 59, 1516009(2022).

    [30] Wang S W, Zheng W G, Deng Y et al. Single frequency high-peak-power fiber laser by suppression of SBS[J]. Laser Physics, 25, 085101(2015).

    [34] Petersen E, Shi W, Chavez-Pirson A et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses[J]. Applied Optics, 51, 531-534(2012).

    [36] Cha Y H, Kim Y, Park H et al. High-power single-frequency pulsed laser based on a Yb-doped large-pitch photonic crystal fiber[J]. Journal of the Korean Physical Society, 70, 973-978(2017).

    [42] Fu S J, Shi W, Tang Z et al. High-energy 100-ns single-frequency all-fiber laser at 1064 nm[J]. Proceedings of SPIE, 10512, 1051219(2018).

    [45] Leigh M, Shi W, Zong J et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 92, 181108(2008).

    [49] Zhang H, Li G Z, Qiao W C et al. Investigations of the high-power, single-frequency, sub-microseconds, 1548-nm fiber laser based on the optical pulse modulation[J]. Journal of Lightwave Technology, 41, 4822-4830(2023).

    [51] Sudarshanam V S, Jin C, Nicholson J W. Single-frequency erbium-doped fiber amplifier with high energy gain at low repetition rates[J]. Proceedings of SPIE, 12865, 1286507(2024).

    [54] Akbulut M, Kotov L, Wiersma K et al. An eye-safe, SBS-free coherent fiber laser LIDAR transmitter with millijoule energy and high average power[J]. Photonics, 8, 15(2021).

    [55] Pan L, Geng J H, Mielke M et al. High energy and high power single frequency 1572 nm laser with an all-fiber MOPA[J]. IEEE Photonics Technology Letters, 36, 258-261(2024).

    [57] Jasapara J C, Andrejco M J, DeSantolo A et al. Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 3-11(2009).

    [61] Lucas E, Lombard L, Jaouën Y et al. 1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm[J]. Applied Optics, 53, 4413-4419(2014).

    [63] Vu K T, Malinowski A, Richardson D J et al. Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system[J]. Optics Express, 14, 10996-11001(2006).

    [66] Su R T, Zhou P, Ma P F et al. High-peak-power, single-frequency, single-mode, linearly polarized, nanosecond all-fiber laser based on self-phase modulation compensation[J]. Applied Optics, 52, 7331-7335(2013).

    [71] Zeng L F, Xi X M, Ye Y et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 45, 5792-5795(2020).

    [72] Hochheim S, Brockmüller E, Wessels P et al. Single-frequency 336 W spliceless all-fiber amplifier based on a chirally-coupled-core fiber for the next generation of gravitational wave detectors[J]. Journal of Lightwave Technology, 40, 2136-2143(2022).

    [74] Wei Y X, Peng W N, Li J W et al. 208 W single-frequency 1064 nm laser based on a single-crystal fiber master-oscillator power amplifier[J]. Optics Letters, 49, 1664-1667(2024).

    [75] Nomura J, Hirosawa K, Yanagisawa T et al. Single-frequency 45-mJ pulses from a MOPA system using an Er, Yb∶glass planar waveguide amplifier and a large mode area Er-doped fiber amplifier[J]. Optics Letters, 48, 1758-1761(2023).

    Tools

    Get Citation

    Copy Citation Text

    Shijie Fu, Haichen Xu, Hao Tian, Quan Sheng, Junxiang Zhang, Peiheng Jiang, Wei Shi, Jianquan Yao. Research Progress on High Power and High Energy Pulsed Single‐Frequency Fiber Laser Amplifiers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jun. 21, 2024

    Accepted: Aug. 26, 2024

    Published Online: Oct. 14, 2024

    The Author Email: Wei Shi (shiwei@tju.edu.cn)

    DOI:10.3788/CJL240994

    CSTR:32183.14.CJL240994

    Topics