Chinese Journal of Lasers, Volume. 50, Issue 20, 2002401(2023)

Reversible Self‑Assembly of Temperature‑Driven Femtosecond Laser Printed Microstructures

Caiding Ni1, Zhaoxin Lao2、*, Zhongguo Ren1, Chao Chen3, and Dong Wu1
Author Affiliations
  • 1School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • 2Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
  • 3Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
  • show less
    References(34)

    [1] Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid[J]. Applied Physics Letters, 82, 133-135(2003).

    [2] Langer G, Brodoceanu D, Bäuerle D. Femtosecond laser fabrication of apertures on two-dimensional microlens arrays[J]. Applied Physics Letters, 89, 261104(2006).

    [3] Chen Q D, Wu D, Niu L G et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization[J]. Applied Physics Letters, 91, 171105(2007).

    [4] McDonald J P, Mistry V R, Ray K E et al. Femtosecond pulsed laser direct write production of nano- and microfluidic channels[J]. Applied Physics Letters, 88, 183113(2006).

    [5] Wu D, Ding Y L, Zhang Y X et al. 3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification[J]. Lab on a Chip, 21, 4805-4813(2021).

    [6] Xin C, Jin D D, Hu Y L et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment[J]. ACS Nano, 15, 18048-18059(2021).

    [7] Armani A M, Kulkarni R P, Fraser S E et al. Label-free, single-molecule detection with optical microcavities[J]. Science, 317, 783-787(2007).

    [8] Asbahi M, Mehraeen S, Wang F K et al. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution[J]. Nano Letters, 15, 6066-6070(2015).

    [9] Chandra D, Yang S. Capillary-force-induced clustering of micropillar arrays: is it caused by isolated capillary bridges or by the lateral capillary meniscus interaction force?[J]. Langmuir, 25, 10430-10434(2009).

    [10] Duan H G, Berggren K K. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion[J]. Nano Letters, 10, 3710-3716(2010).

    [11] Hu Y L, Lao Z X, Cumming B P et al. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 6876-6881(2015).

    [12] Lao Z X, Pan D, Yuan H W et al. Mechanical-tunable capillary-force-driven self-assembled hierarchical structures on soft substrate[J]. ACS Nano, 12, 10142-10150(2018).

    [13] Lao Z X, Zheng Y Y, Dai Y C et al. Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS[J]. Advanced Functional Materials, 30, 1909467(2020).

    [14] Liu X F, Han D A, Guo H et al. Surface enhanced Raman scattering substrates based on femtosecond laser structured polytetrafluoroethylene[J]. Laser & Optoelectronics Progress, 58, 2314011(2021).

    [15] Lao Z X, Hu Y L, Pan D et al. Self-sealed bionic long microchannels with thin walls and designable nanoholes prepared by line-contact capillary-force assembly[J]. Small, 13, 1603957(2017).

    [16] Sutton A, Shirman T, Timonen J V I et al. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation[J]. Nature Communications, 8, 14700(2017).

    [17] Zarzar L D, Kim P, Kolle M et al. Direct writing and actuation of three-dimensionally patterned hydrogel pads on micropillar supports[J]. Angewandte Chemie, 123, 9528-9532(2011).

    [18] Sun R, Wang Z Y, Hu Y L et al. Processing and application of hydrogel Janus micropillars based on femtosecond laser[J]. Chinese Journal of Lasers, 46, 0902001(2019).

    [19] Jin D D, Chen Q Y, Huang T Y et al. Four-dimensional direct laser writing of reconfigurable compound micromachines[J]. Materials Today, 32, 19-25(2020).

    [20] Ren Y Y, Liu Z Y, Jin G Q et al. Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers[J]. Advanced Materials, 33, 2008486(2021).

    [21] Saadli M, Braunmiller D L, Mourran A et al. Thermally and magnetically programmable hydrogel microactuators[J]. Small, 19, 2207035(2023).

    [22] Zhao Y S, Lo C Y, Ruan L C et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics, 6, eabd5483(2021).

    [23] Zhu Q L, Du C, Dai Y H et al. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation[J]. Nature Communications, 11, 5166(2020).

    [24] Ge G, Lu Y, Qu X Y et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor[J]. ACS Nano, 14, 218-228(2020).

    [25] Lee M R, Phang I Y, Cui Y et al. Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation[J]. Small, 11, 740-748(2015).

    [26] Amjadi M, Sitti M. High-performance multiresponsive paper actuators[J]. ACS Nano, 10, 10202-10210(2016).

    [27] Wei S X, Lu W, Le X X et al. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators[J]. Angewandte Chemie International Edition, 58, 16243-16251(2019).

    [28] Ma C X, Lu W, Yang X X et al. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors[J]. Advanced Functional Materials, 28, 1704568(2018).

    [29] Li J, Ma Q Y, Xu Y et al. Highly bidirectional bendable actuator engineered by LCST-UCST bilayer hydrogel with enhanced interface[J]. ACS Applied Materials & Interfaces, 12, 55290-55298(2020).

    [30] Hu Y L, Wang Z Y, Jin D D et al. Botanical-inspired 4D printing of hydrogel at the microscale[J]. Advanced Functional Materials, 30, 1907377(2020).

    [31] Pasparakis G, Tsitsilianis C. LCST polymers: thermoresponsive nanostructured assemblies towards bioapplications[J]. Polymer, 211, 123146(2020).

    [32] Hu X Y, Ma Z C, Han B et al. Femtosecond laser fabrication of protein-based smart soft actuators[J]. Chinese Journal of Lasers, 48, 1402001(2021).

    [33] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).

    [34] Yao Y S, Chen R, Ge Z S et al. Hydroxyapatite deposition properties on laser processed surface of zirconium-based amorphous alloy[J]. Chinese Journal of Lasers, 49, 1002604(2022).

    Tools

    Get Citation

    Copy Citation Text

    Caiding Ni, Zhaoxin Lao, Zhongguo Ren, Chao Chen, Dong Wu. Reversible Self‑Assembly of Temperature‑Driven Femtosecond Laser Printed Microstructures[J]. Chinese Journal of Lasers, 2023, 50(20): 2002401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Micro-Nano Manufacturing

    Received: Mar. 27, 2023

    Accepted: Apr. 24, 2023

    Published Online: Aug. 29, 2023

    The Author Email: Lao Zhaoxin (laozx@hfut.edu.cn)

    DOI:10.3788/CJL230651

    Topics