Chinese Journal of Lasers, Volume. 50, Issue 20, 2002401(2023)
Reversible Self‑Assembly of Temperature‑Driven Femtosecond Laser Printed Microstructures
[1] Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid[J]. Applied Physics Letters, 82, 133-135(2003).
[2] Langer G, Brodoceanu D, Bäuerle D. Femtosecond laser fabrication of apertures on two-dimensional microlens arrays[J]. Applied Physics Letters, 89, 261104(2006).
[3] Chen Q D, Wu D, Niu L G et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization[J]. Applied Physics Letters, 91, 171105(2007).
[4] McDonald J P, Mistry V R, Ray K E et al. Femtosecond pulsed laser direct write production of nano- and microfluidic channels[J]. Applied Physics Letters, 88, 183113(2006).
[5] Wu D, Ding Y L, Zhang Y X et al. 3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification[J]. Lab on a Chip, 21, 4805-4813(2021).
[6] Xin C, Jin D D, Hu Y L et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment[J]. ACS Nano, 15, 18048-18059(2021).
[7] Armani A M, Kulkarni R P, Fraser S E et al. Label-free, single-molecule detection with optical microcavities[J]. Science, 317, 783-787(2007).
[8] Asbahi M, Mehraeen S, Wang F K et al. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution[J]. Nano Letters, 15, 6066-6070(2015).
[9] Chandra D, Yang S. Capillary-force-induced clustering of micropillar arrays: is it caused by isolated capillary bridges or by the lateral capillary meniscus interaction force?[J]. Langmuir, 25, 10430-10434(2009).
[10] Duan H G, Berggren K K. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion[J]. Nano Letters, 10, 3710-3716(2010).
[11] Hu Y L, Lao Z X, Cumming B P et al. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 6876-6881(2015).
[12] Lao Z X, Pan D, Yuan H W et al. Mechanical-tunable capillary-force-driven self-assembled hierarchical structures on soft substrate[J]. ACS Nano, 12, 10142-10150(2018).
[13] Lao Z X, Zheng Y Y, Dai Y C et al. Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS[J]. Advanced Functional Materials, 30, 1909467(2020).
[14] Liu X F, Han D A, Guo H et al. Surface enhanced Raman scattering substrates based on femtosecond laser structured polytetrafluoroethylene[J]. Laser & Optoelectronics Progress, 58, 2314011(2021).
[15] Lao Z X, Hu Y L, Pan D et al. Self-sealed bionic long microchannels with thin walls and designable nanoholes prepared by line-contact capillary-force assembly[J]. Small, 13, 1603957(2017).
[16] Sutton A, Shirman T, Timonen J V I et al. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation[J]. Nature Communications, 8, 14700(2017).
[17] Zarzar L D, Kim P, Kolle M et al. Direct writing and actuation of three-dimensionally patterned hydrogel pads on micropillar supports[J]. Angewandte Chemie, 123, 9528-9532(2011).
[18] Sun R, Wang Z Y, Hu Y L et al. Processing and application of hydrogel Janus micropillars based on femtosecond laser[J]. Chinese Journal of Lasers, 46, 0902001(2019).
[19] Jin D D, Chen Q Y, Huang T Y et al. Four-dimensional direct laser writing of reconfigurable compound micromachines[J]. Materials Today, 32, 19-25(2020).
[20] Ren Y Y, Liu Z Y, Jin G Q et al. Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers[J]. Advanced Materials, 33, 2008486(2021).
[21] Saadli M, Braunmiller D L, Mourran A et al. Thermally and magnetically programmable hydrogel microactuators[J]. Small, 19, 2207035(2023).
[22] Zhao Y S, Lo C Y, Ruan L C et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics, 6, eabd5483(2021).
[23] Zhu Q L, Du C, Dai Y H et al. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation[J]. Nature Communications, 11, 5166(2020).
[24] Ge G, Lu Y, Qu X Y et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor[J]. ACS Nano, 14, 218-228(2020).
[25] Lee M R, Phang I Y, Cui Y et al. Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation[J]. Small, 11, 740-748(2015).
[26] Amjadi M, Sitti M. High-performance multiresponsive paper actuators[J]. ACS Nano, 10, 10202-10210(2016).
[27] Wei S X, Lu W, Le X X et al. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators[J]. Angewandte Chemie International Edition, 58, 16243-16251(2019).
[28] Ma C X, Lu W, Yang X X et al. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors[J]. Advanced Functional Materials, 28, 1704568(2018).
[29] Li J, Ma Q Y, Xu Y et al. Highly bidirectional bendable actuator engineered by LCST-UCST bilayer hydrogel with enhanced interface[J]. ACS Applied Materials & Interfaces, 12, 55290-55298(2020).
[30] Hu Y L, Wang Z Y, Jin D D et al. Botanical-inspired 4D printing of hydrogel at the microscale[J]. Advanced Functional Materials, 30, 1907377(2020).
[31] Pasparakis G, Tsitsilianis C. LCST polymers: thermoresponsive nanostructured assemblies towards bioapplications[J]. Polymer, 211, 123146(2020).
[32] Hu X Y, Ma Z C, Han B et al. Femtosecond laser fabrication of protein-based smart soft actuators[J]. Chinese Journal of Lasers, 48, 1402001(2021).
[33] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).
[34] Yao Y S, Chen R, Ge Z S et al. Hydroxyapatite deposition properties on laser processed surface of zirconium-based amorphous alloy[J]. Chinese Journal of Lasers, 49, 1002604(2022).
Get Citation
Copy Citation Text
Caiding Ni, Zhaoxin Lao, Zhongguo Ren, Chao Chen, Dong Wu. Reversible Self‑Assembly of Temperature‑Driven Femtosecond Laser Printed Microstructures[J]. Chinese Journal of Lasers, 2023, 50(20): 2002401
Category: Laser Micro-Nano Manufacturing
Received: Mar. 27, 2023
Accepted: Apr. 24, 2023
Published Online: Aug. 29, 2023
The Author Email: Lao Zhaoxin (laozx@hfut.edu.cn)