Acta Optica Sinica, Volume. 42, Issue 12, 1210002(2022)

Object Detection in Optical Remote Sensing Images Based on FFC-SSD Model

Junda Xue1,2, Jiajia Zhu1,2、**, Jing Zhang1,2、*, Xiaohui Li1、***, Shuai Dou1, Lin Mi1, Ziyang Li1, Xinfang Yuan1, and Chuanrong Li1
Author Affiliations
  • 1Aerospace Information Research Institute, Key Laboratory of Quantitative Remote Sensing Information Technology, Chinese Academy of Sciences, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(16)
    Framework of FFC-SSD model
    Number of samples and size distribution of each category in DOTA dataset. (a) Number of samples; (b) size distribution
    Average coverage of five groups varying with number of clusters k
    Distribution of sample target box dimensions in DOTA and default target box dimensions set by group clustering
    Diagram of MSFF module
    Output feature maps of MSFF_D and MSFF_U modules. (a) Original images; (b) output feature maps of MSFF_D module; (c) output feature maps of MSFF_U module
    Convergence curves of loss function
    Average precision (AP) for each category in DOTA testing dataset for each experiment
    Test results of SSD and FFC-SSD models. (a)(c) SSD; (b)(d) FFC-SSD
    • Table 1. Grouping description of target categories in DOTA datasets

      View table

      Table 1. Grouping description of target categories in DOTA datasets

      GroupObject categorySample number per category
      T0Small vehicle (SV)>100000
      T1Large vehicle (LV), ship20000~40000
      T2Plane, storage tank (ST), harbor5000~10000
      T3Bridge, tennis court (TC), swimming pool (SP)2000~5000
      T4Roundabout (RA), soccer field(SF), ground field track (GFT), Baseball diamond (BD), basketball court (BC), helicopter (HC)<2000
    • Table 2. Default target box size on each fusion feature map

      View table

      Table 2. Default target box size on each fusion feature map

      nLayerFeature map size /(pixel×pixel)Size of default box w×h /(pixel×pixel)
      1Conv4_3256×2565×10,10×6,12×21,20×11,14×13,22×20,18×27,36×17
      2Conv5_3128×12827×39,75×45,48×29,42×69,40×39,84×23,24×66
      3FC764×6472×80,92×89,56×72,48×91,105×60,73×100
      4Conv8_232×32149×96,159×152,40×133,130×120
      5Conv9_216×16167×201,97×187,59×210
      6Conv10_28×8246×248
      7Conv11_24×4290×323
    • Table 3. Comparsion of average coverage for each category in DOTA of default object frame parameters set by two methods%

      View table

      Table 3. Comparsion of average coverage for each category in DOTA of default object frame parameters set by two methods%

      Object categorySVLVShipPlaneSTHarborBridgeTC
      SSD35.6566.1166.2980.1254.0476.2059.2577.27
      BGC80.9978.0980.1087.2487.3178.7780.2186.94
      Object categoryRASFHPGFTBDSPBC
      SSD77.3667.4666.8478.9685.2173.6377.70
      BGC88.8779.4679.2080.5188.0684.5682.48
    • Table 4. Influence of each module on mAP and FPS of object detection

      View table

      Table 4. Influence of each module on mAP and FPS of object detection

      Experiment No.ModelAps /%APless /%mAP /%FPS
      1SSD33.552.555.926
      2SSD+MSFF_U44.363.564.624
      3SSD+BGC49.562.463.616
      4SSD+BGC+MSFF_U (FFC-SSD)69.369.974.915
      5SSD+BGC+MSFF_D63.464.470.012
    • Table 5. Detection performance of FFC-SSD and other models on DOTA dataset%

      View table

      Table 5. Detection performance of FFC-SSD and other models on DOTA dataset%

      ModelSSD[1]YOLOv3[9]FRCNN[2,20]DSSD[15,21]FMSSD[15]FFC-SSD
      Plane84.291.080.391.189.188.4
      Small vehicle39.940.353.679.069.282.5
      Large vehicle55.976.952.577.273.676.4
      Roundabout52.658.549.872.667.574.1
      Bridge25.750.032.954.648.251.0
      Soccer field56.718.057.038.052.762.0
      Helicopter33.085.241.928.960.254.3
      APGround field track54.830.268.166.468.074.7
      Baseball diamond72.768.377.671.881.578.3
      Storage tank61.782.159.669.773.387.2
      Tennis court80.492.090.487.690.790.6
      Swimming pool62.080.256.559.480.673.0
      Ship65.989.250.087.576.987.4
      Harbor48.469.361.775.472.467.2
      Basketball court45.362.475.152.182.776.2
      mAP55.966.260.667.472.474.9
      stdAP15.822.214.917.411.711.6
      FPS2613791615
    • Table 6. Detection performance of FFC-SSD and other models on NWPU VHR-10 dataset%

      View table

      Table 6. Detection performance of FFC-SSD and other models on NWPU VHR-10 dataset%

      ModelSSD[1]YOLOv3[9]FRCNN[2,15]FMSSD[15]FFC-SSD
      Plane98.295.694.699.799.7
      Ship83.988.682.389.996.3
      Storage tank75.977.965.390.388.1
      Baseball diamond90.291.795.598.299.4
      APTennis court85.689.181.986.090.3
      Basketball court79.689.889.796.899.4
      Ground track field92.284.892.499.699.9
      Harbor77.181.272.475.696.1
      Bridge67.870.857.580.198.5
      Vehicle75.687.877.888.289.0
      mAP82.685.780.990.495.7
      stdAP8.706.9212.197.894.49
    • Table 7. mAP of different models on three optical remote sensing datasets%

      View table

      Table 7. mAP of different models on three optical remote sensing datasets%

      ModelNWPU VHR-10RSODUCAS-AOD
      SSD61.745.148.9
      FFC-SSD76.560.269.6
    Tools

    Get Citation

    Copy Citation Text

    Junda Xue, Jiajia Zhu, Jing Zhang, Xiaohui Li, Shuai Dou, Lin Mi, Ziyang Li, Xinfang Yuan, Chuanrong Li. Object Detection in Optical Remote Sensing Images Based on FFC-SSD Model[J]. Acta Optica Sinica, 2022, 42(12): 1210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 24, 2021

    Accepted: Nov. 25, 2021

    Published Online: Jun. 20, 2022

    The Author Email: Zhu Jiajia (jjzhu@aoe.ac.cn), Zhang Jing (zhangjing@aoe.ac.cn), Li Xiaohui (xhli@aoe.ac.cn)

    DOI:10.3788/AOS202242.1210002

    Topics