Laser & Optoelectronics Progress, Volume. 59, Issue 14, 1415014(2022)

Efficient Material Editing of Single Image Based on Inverse Rendering

Kunliang Xie1, Renjiao Yi1, Haifang Zhou1, Chenyang Zhu1, Yuwan Liu2, and Kai Xu1、*
Author Affiliations
  • 1School of Computer Science, National University of Defense Technology, Changsha 410005, Hunan , China
  • 2Dongbu Zhanqu Zhanqinju, Nanjing 210000, Jiangsu , China
  • show less
    Figures & Tables(11)
    Architecture of proposed neural network
    Picture display in the Hierarchical Shininess dataset
    Visual comparisons of highlight separation on real pictures
    Visual comparisons on the MIT intrinsics dataset
    Visual comparisons on specular layer between GT images and network output images
    Visual comparisons between the synthetic images (GT) after the combination of specular layer and diffuse layer with different material shininess parameters and the output results of the proposed method
    Material editing of real pictures
    • Table 1. Hyperparameter settings in network training

      View table

      Table 1. Hyperparameter settings in network training

      NetworkBatch sizeOptimizerInitial learning rateNumber of iterations
      Specular-Net64Adam1×10-450×103
      IID-Net64Adam1×10-428×103
      Shininess-Net64Adam1×10-435×103
    • Table 2. Datasets used by proposed networks

      View table

      Table 2. Datasets used by proposed networks

      NetworkDatasetSourceSize
      Specular-NetLIMEMeka et al.[4]8.5×104
      IID-NetShapeNet IntrinsicsShi et al.[5]20×104
      Shininess-NetHierarchical ShininessOurs140×104
    • Table 3. Quantitative comparisons on the SHIQ dataset, ShapeNet Intrinsics dataset, and some real pictures

      View table

      Table 3. Quantitative comparisons on the SHIQ dataset, ShapeNet Intrinsics dataset, and some real pictures

      MethodSHIQ datasetShapeNet Intrinsics datasetReal pictures
      SMSELMSEDSSIMSMSELMSEDSSIMSMSELMSEDSSIM
      Shen13280.05870.3330.20020.12860.24330.2070.02240.1670.1745
      Shi1750.03050.17890.21990.01330.10560.15760.01670.24970.2087
      Souza1890.06070.3490.20620.12580.23910.21030.0090.11780.1639
      Yamamoto19290.05940.33640.20110.12860.24180.2060.02250.16670.1743
      Fu21100.00030.00190.00880.01070.03320.10340.00560.10350.1414
      Ours0.01080.04850.17650.00780.04490.09270.00560.14480.1384
    • Table 4. Quantitative comparisons on the MIT intrinsics dataset

      View table

      Table 4. Quantitative comparisons on the MIT intrinsics dataset

      MethodSMSELMSEDSSIM
      albedoshadingalbedoshadingalbedoshading
      SIRFS15[30]0.01470.00830.04160.01680.12380.0985
      DI15150.02770.01540.05850.02950.15260.1328
      Shi1750.02780.01260.05030.02400.14650.1200
      Yi20190.02740.01450.04760.0284
      SMCH21310.02250.01460.04840.02780.14990.1912
      Ours0.02730.01290.03860.03350.14840.1420
    Tools

    Get Citation

    Copy Citation Text

    Kunliang Xie, Renjiao Yi, Haifang Zhou, Chenyang Zhu, Yuwan Liu, Kai Xu. Efficient Material Editing of Single Image Based on Inverse Rendering[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 24, 2021

    Accepted: Feb. 21, 2022

    Published Online: Jul. 1, 2022

    The Author Email: Kai Xu (kevin.kai.xu@gmail.com)

    DOI:10.3788/LOP202259.1415014

    Topics