Laser & Optoelectronics Progress, Volume. 55, Issue 2, 022802(2018)
High Resolution Remote Sensing Image Classification Combining with Mean-Shift Segmentation and Fully Convolution Neural Network
[1] Sun J B[M]. Principles and applications of remote sensing(2009).
[4] Li D W, Yang F B, Wang X X. Multisource remote sensing classification based on random forest and adaptive weighted D-S evidence synthesis[J]. Laser & Optoelectronics Progress, 53, 031001(2016).
[5] Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 36, 0428001(2016).
[6] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. [C]// Proceedings of the 25 th International Conference on Neural Information Processing Systems , 1097-1105(2012).
[8] Chen Y, Fan R S, Wang J X et al. High resolution image classification method combining with minimum noise fraction rotation and convolution neural network[J]. Laser & Optoelectronics Progress, 54, 102801(2017).
[9] Deng Z, Li D, Ke Y H et al. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. Remote Sensing for Land and Resources, 28, 12-18(2016).
[11] Mikolov T, Zweig G. Context dependent recurrent neural network language model: MSR-TR-2012-92[R]. Miami: 2012 IEEE Spoken Language Technology Workshop, 234-239(2012).
[12] He X F, Zou Z R, Tao C et al. Combined saliency with multi-convolutional neural network for high resolution remote sensing scene classification[J]. Acta Geodaetica et Cartographica Sinica, 45, 1073-1080(2016).
[13] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. [C]// 32 nd International Conference on Machine Learning , 448-456(2015).
[14] Simonyan K, Zisserman A[J]. Very deep convolutional networks for large-scale image recognition Computer Science:, 2014arXiv1409, 1556S.
[15] Wang G, Wang G H, Yang H C. Improved Mean-Shift segmentation algorithm combining with color-texture pattern[J]. Science of Surveying and Mapping, 40, 108-112(2015).
[16] Zhou J X, Zhu J J, Mei X M et al. An adaptive MeanShift segmentaion method of remote sensing image based on multi-dimension features[J]. Geomatics and Information Science of Wuhan University, 37, 419-422(2012).
[17] Cheng Y Z. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 17, 790-799(1995).
Get Citation
Copy Citation Text
Xu Fang, Guanghui Wang, Huachao Yang, Huijie Liu, Libo Yan. High Resolution Remote Sensing Image Classification Combining with Mean-Shift Segmentation and Fully Convolution Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022802
Category: Remote Sensing and Sensors
Received: Aug. 2, 2017
Accepted: --
Published Online: Sep. 10, 2018
The Author Email: Xu Fang (fangxu622@126.com)