Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 5, 409(2020)
Progress in photo-induced semiconductor quantum rods alignment
[1] [1] ROGACH A L.Semiconductor Nanocrystal Quantum Dots[M]. New York: Springer, 2008.
[2] [2] MILLIRON D J, HUGHES S M, CUI Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology[J]. Nature, 2004, 430 (6996): 190-195.
[3] [3] REISS P, PROTIRE M, LI L. Core/shell semiconductornanocrystals[J]. Small, 2009, 5(2): 154-168.
[4] [4] TALAPIN D V, KOEPPE R, GTZINGER S,et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality[J]. Nano Letters, 2003, 3(12): 1677-1681.
[5] [5] MARTYNENKO I V, LITVIN A P, PURCELL-MILTON F, et al. Application of semiconductor quantum dots in bioimaging and biosensing[J]. Journal of Materials Chemistry B, 2017, 5(33): 6701-6727.
[6] [6] KAIRDOLF B A, SMITH A M, STOKES T H, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annual Review of Analytical Chemistry, 2013, 6: 143-162.
[10] [10] TANG J, KEMP K W, HOOGLAND S,et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nature Materials, 2011, 10(10): 765-771.
[12] [12] KRAMER I J, SARGENT E H. Colloidal quantum dotphotovoltaics: a path forward[J]. ACS Nano, 2011, 5(11): 8506-8514.
[13] [13] STECKEL J S, HO J,HAMILTON C, et al. Quantum dots: The ultimate down-conversion material for LCD displays[J]. Journal of the Society for Information Display, 2015, 23(7): 294-305.
[14] [14] CHEN H W,HE J, WU S T. Recent advances on quantum-dot-enhanced liquid-crystal displays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1900611.
[16] [16] COE S, WOO W K, BAWENDI M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002, 420(6917): 800-803.
[17] [17] ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum[J]. Nano Letters, 2009, 9(7): 2532-2536.
[20] [20] HU J T, LI L S, YANG W D, et al. Linearly polarized emission from colloidal semiconductor quantum rods[J]. Science, 2001, 292(5524): 2060- 2063.
[21] [21] SITT A, SALANT A, MENAGEN G, et al. Highly emissive nano rod-in-rod heterostructures with strong linear polarization[J]. Nano Letters, 2011, 11(5): 2054-2060.
[22] [22] SHE C X, DEMORTIRE A, SHEVCHENKO E V, et al. Using shape to control photoluminescence from CdSe/CdS Core/Shell nanorods[J]. Journal of Physical Chemistry Letters, 2011, 2(12): 1469-1475.
[23] [23] SRIVASTAVA A K, ZHANG W L, SCHNEIDER J, et al. Photoaligned nanorod enhancement films with polarized emission for liquid-crystal-display applications[J]. Advanced Materials, 2017, 29(33): 1701091.
[24] [24] ZHANG W L, SCHNEIDER J, CHIGRINOV V G, et al. Optically addressable photoaligned semiconductor nanorods in thin liquid crystal films for display applications[J]. Advanced Optical Materials, 2018, 6(16): 1800250.
[25] [25] DU T, SCHNEIDER J, SRIVASTAVA A K, et al. Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods[J]. ACS Nano, 2015, 9(11): 11049-11055.
[26] [26] SCHNEIDER J, ZHANG W L, SRIVASTAVA A K, et al. Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal polymer matrix[J]. Nano Letters, 2017, 17(5): 3133-3138.
[27] [27] TALAPIN D V, NELSON J H, SHEVCHENKO E V, et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies[J]. Nano Letters, 2007, 7(10): 2951-2959.
[28] [28] CARBONE L, NOBILE C, DE GIORGI M, et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach[J]. Nano Letters, 2007, 7(10): 2942-2950.
[29] [29] MEKIS I, TALAPIN D V, KORNOWSKI A, et al. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “Greener” chemical approaches[J]. The Journal of Physical Chemistry B, 2003, 107(30): 7454-7462.
[30] [30] GAO Y, TA V D, ZHAO X, et al. Observation of polarized gain from aligned colloidal nanorods[J]. Nanoscale, 2015, 7(15): 6481-6486.
[31] [31] MOHAMMADIMASOUDI M, HENS Z, NEYTS K. Full alignment of dispersed colloidalnanorods by alternating electric fields[J]. RSC Advances, 2016, 6 (61): 55736-55744.
[32] [32] HU Z H, FISCHBEIN M D, QUERNER C,et al. Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices[J]. Nano Letters, 2006, 6(11): 2585-2591.
[33] [33] RYAN K M, MASTROIANNI A, STANCIL K A,et al. Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices[J]. Nano Letters, 2006, 6(7): 1479-1482.
[34] [34] MOHAMMADIMASOUDI M, PENNINCK L, AUBERT T, et al. Fast and versatile deposition of aligned semiconductor nanorods by dip-coating on a substrate with interdigitated electrodes[J]. Optical Materials Express, 2013, 3(12): 2045-2054.
[35] [35] LI L S, ALIVISATOS A P. Origin and scaling of the permanent dipole moment in CdSe nanorods[J]. Physical Review Letters, 2003, 90(9): 097402.
[36] [36] QUERNER C, FISCHBEIN M D, HEINEY P A, et al. Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics[J]. Advanced Materials, 2008, 20(12): 2308-2314.
[37] [37] RIZZO A, NOBILE C, MAZZEO M,et al. Polarized light emitting diode by long-range nanorod self-assembling on a water surface[J]. ACS Nano, 2009, 3(6): 1506-1512.
[38] [38] PERSANO A, DE GIORGI M, FIORE A,et al. Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods[J]. ACS Nano, 2010, 4(3): 1646-1652.
[39] [39] SINGH A, GUNNING R D, AHMED S, et al. Controlled semiconductor nanorodassembly from solution: influence of concentration, charge and solvent nature[J]. Journal of Materials Chemistry, 2012, 22(4): 1562-1569.
[40] [40] NOBILE C, CARBONE L, FIORE A, et al. Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics[J]. Journal of Physics-Condensed Matter, 2009, 21(26): 264013.
[41] [41] WU K J, CHU K C, CHAO C Y,et al. CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices[J]. Nano Letters, 2007, 7(7): 1908-1913.
[42] [42] AMIT Y, FAUST A, LIEBERMAN I,et al. Semiconductor nanorod layers aligned through mechanical rubbing[J]. Physica Status Solidi (A), 2012, 209(2): 235-242.
[43] [43] HASEGAWA M, HIRAYAMA Y, DERTINGER S. Polarized fluorescent emission from alignedelectrospun nanofiber sheets containing semiconductor nanorods[J]. Applied Physics Letters, 2015, 106(5): 051103.
[44] [44] BASHOUTI M, SALALHA W, BRUMER M,et al. Alignment of colloidal CdS nanowires embedded in polymer nanofibers by electrospinning[J]. Chem. Phys. Chem., 2006, 7(1): 102- 106.
[45] [45] LEE C H, TIAN L M, ABBAS A,et al. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates[J]. Nanotechnology, 2011, 22(27): 275311.
[46] [46] ROSKOV K E, KOZEK K A, WU W C, et al. Long-range alignment of gold nanorods in electrospun polymer nano/microfibers[J]. Langmuir, 2011, 27(23): 13965-13969.
[48] [48] HIKMET R A M, CHIN P T K, TALAPIN D V,et al. Polarized-light-emitting quantum-rod diodes[J]. Advanced Materials, 2005, 17(11): 1436-1439.
[49] [49] CUNNINGHAM P D, SOUZA J B JR, FEDIN I, et al. Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology[J]. ACS Nano, 2016, 10(6): 5769-5781.
[52] [52] ICHIMURA K O, SUZUKI Y, SEKI T, et al. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer[J]. Langmuir, 1988, 4(5): 1214-1216.
[53] [53] SCHADT M, SCHMITT K, KOZINKOV V, et al. Surface-induced parallel alignment of liquid-crystals by linearly polymerized photopolymers[J]. Japanese Journal of Applied Physics, 1992, 31(7): 2155-2164.
[54] [54] NISHIKAWA M, TAHERI B, WEST J L. Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure[J].Applied Physics Letters, 1998, 72(19): 2403-2405.
[55] [55] AKIYAMA H, KAWARA T, TAKADA H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells[J]. Liquid Crystals, 2002, 29(10): 1321-1327.
[56] [56] KISELEV A D, CHIGRINOV V G, PASECHNIK S V, et al. Photoinduced reordering in thin azo-dye films and light-induced reorientation dynamics of the nematic liquid-crystal easy axis[J]. Physical Review E, 2012, 86(1): 011706.
[57] [57] CHIGRINOV V G, PIKIN S, VEREVOCHNIKOV A, et al. Diffusion model of photoaligning in azo-dye layers[J]. Physical Review E, 2004, 69(6): 061713.
[58] [58] FAN F, DU T, SRIVASTAVA A K,et al. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate[J]. Optics Express, 2012, 20(21): 23036-23043.
[59] [59] ZHAO C X, FAN F, DU T,et al. Multilayer photo-aligned thin-film structure for polarizing photonics[J]. Optics Letters, 2015, 40(13): 2993-2996.
[60] [60] WU H, HU W, HU H C,et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system[J]. Optics Express, 2012, 20(15): 16684-16689.
[61] [61] CHEN P, WEI B Y,HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics[J]. Advanced Materials, 2019, 19: 1903665.
[62] [62] SUN J T, SRIVASTAVA A K, ZHANG W,et al. Optically rewritable 3D liquid crystal displays[J]. Optics Letters, 2014, 39(21): 6209-6212.
[63] [63] TAM A M W, FAN F, DU T, et al. Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states[J]. Physical Review Applied, 2017, 7(3): 034010.
[64] [64] COLLETT E. Field Guide to Polarization[M]. Bellingham: SPIE, 2005.
[65] [65] PAQUET C, KUMACHEVA E. Patterning semiconductornanocrystals in polymer films[J]. Advanced Functional Materials, 2007, 17(16): 3105-3110.
[66] [66] GREENER J, VAN DER LOOP T H, PAQUET C, et al. A study of simultaneous patterning and alignment of semiconductor nanorods via polymerization-induced phase separation[J]. Langmuir, 2009, 25(5): 3173-3177.
[67] [67] SRIVASTAVA A K, HU W, CHIGRINOV V G, et al. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals[J]. Applied Physics Letters, 2012, 101(3): 031112.
[68] [68] CHIGRINOV V G, KOZENKOV V M, KWOK H S. Photoalignment of Liquid Crystalline Materials: Physics and Applications[M]. Chichester: John Wiley & Sons, 2008.
[69] [69] SHTEYNER E A, SRIVASTAVA A K, CHIGRINOV V G, et al. Submicron-scale liquid crystal photo-alignment[J]. Soft Matter, 2013, 9(21): 5160-5165.
[70] [70] DUDKA T, ZHANG W L, SCHNEIDER J, et al. Formulation of a composite system of liquid crystals and light-emitting semiconductor quantum rods: from assemblies in solution to photoaligned films[J]. Advanced Materials Technologies, 2019, 4(11): 1900695.
[71] [71] ZHANG W L, PRODANOV M F, SCHNEIDER J, et al. Ligand shell engineering to achieve optimal photoalignment of semiconductor quantum rods for liquid crystal displays[J]. Advanced Functional Materials, 2019, 29(3): 1805094.
[72] [72] TSENG M C, YAROSHCHUK O, BIDNA T, et al. Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens[J]. RSC Advances, 2016, 6(53): 48181-48188.
[73] [73] CHIGRINOV V G. Liquid Crystal Photonics[M]. New York: Nova Science Publishers, 2014.
[74] [74] GUPTA S K, PRADANOV M F, ZHANG W L, et al. Inkjet-printed aligned quantum rod enhancement films for their application in liquid crystal displays[J]. Nanoscale, 2019, 11(43): 20837-20846.
Get Citation
Copy Citation Text
ZHANG Wan-long, SRIVASTAVA Abhishek, ROGACH Andrey, KWOK Hoi-sing. Progress in photo-induced semiconductor quantum rods alignment[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(5): 409
Category:
Received: Dec. 10, 2019
Accepted: --
Published Online: May. 30, 2020
The Author Email: ZHANG Wan-long (wzhangan@connect.ust.hk)