Acta Photonica Sinica, Volume. 54, Issue 3, 0323003(2025)
Design of Solar Absorber Based on Laminar and Nested Structure
[1] BAGMANCI M, KARAASLAN M, UNAL E et al. Solar energy harvesting with ultra broadband metamaterial absorber[J]. International Journal of Modern Physics B, 33, 1950056(2019).
[2] LIU Z, ZHANG H, FU G et al. Colloid templated semiconductor meta-surface for ultra broadband solar energy absorber[J]. Solar Energy, 198, 194-201(2020).
[3] ZHENG Z, SHI T, LIU H et al. Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion[J]. Applied Thermal Engineering, 207, 118173(2022).
[4] DENG Z, ZHOU J, MIAO L et al. The emergence of solar thermal utilization: solar driven steam generation[J]. Journal of Materials Chemistry A, 5, 7691-7709(2017).
[5] LI Q, LIU Y, GUO S et al. Solar energy storage in the rechargeable batteries[J]. Nano Today, 16, 46-60(2017).
[6] LIU Y, ZHAO J, ZHANG S et al. Advances and challenges of broadband solar absorbers for efficient solar steam generation[J]. Environmental Science: Nano, 9, 2264-2296(2022).
[7] LANDY N I, SAJUYIJBE S, MOCK J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[8] SMITH D R, PADILLA W J, VIER D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).
[9] WU P, CHEN Z, XU D et al. A narrow dual-band monolayer unpatterned graphene-based perfect absorber with critical coupling in the near infrared[J]. Micromachines, 11, 58(2020).
[10] CEN C, CHEN Z, XU D et al. High quality factor, high sensitivity metamaterial graphene-perfect absorber based on critical coupling theory and impedance matching[J]. Nanomaterials, 10, 95(2020).
[11] CEN C, ZHANG Y, CHEN X et al. A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency[J]. Physica E: Low-dimensional Systems and Nanostructures, 117, 113840(2020).
[12] SCHURIG D, MOCK J J, JUSTICE B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).
[13] ERGIN T, STENGER N, BRENNER P et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 328, 337-339(2010).
[14] LIU N, MESCH M, WEISS T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).
[15] TAO H, BINGHAM C M, STRIKWERDA A C et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Physical Review B—Condensed Matter and Materials Physics, 78, 241103(2008).
[16] LIANG C, YI Z, CHEN X et al. Dual-band infrared perfect absorber based on a Ag-dielectric-Ag multilayer films with nanoring grooves arrays[J]. Plasmonics, 15, 93-100(2020).
[17] SHEN X, CUI T J, ZHAO J et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 19, 9401-9407(2011).
[18] WANG Y, QIN F, YI Z et al. Effect of slit width on surface plasmon resonance[J]. Results in Physics, 15, 102711(2019).
[19] LI M, LIANG C, ZHANG Y et al. Terahertz wideband perfect absorber based on open loop with cross nested structure[J]. Results in Physics, 15, 102603(2019).
[20] PARK H, LEE S Y, KIM J et al. Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide[J]. Optics Express, 23, 24464-24474(2015).
[21] LI W, GULER U, KINSEY N et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 26, 7959-7965(2014).
[22] BAQIR M A, CHOUDHORY P K. Hyperbolic metamaterial-based UV absorber[J]. IEEE Photonics Technology Letters, 29, 1548-1551(2017).
[23] LIANG C, ZHANG Y, YI Z et al. A broadband and polarization-independent metamaterial perfect absorber with monolayer Cr and Ti elliptical disks array[J]. Results in Physics, 15, 102635(2019).
[24] YU P, CHEN X, YI Z et al. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared[J]. Optical Materials, 97, 109400(2019).
[25] LANDY N I, BINGHAM C M, TYLER T et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B—Condensed Matter and Materials Physics, 79, 125104(2009).
[26] YI Z, LI X, WU H et al. Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties[J]. Nanomaterials, 9, 1254(2019).
[27] LIU X, TYLER T, STARR T et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 107, 045901(2011).
[28] YI Z, ZENG Y, WU H et al. Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters[J]. Results in Physics, 15, 102609(2019).
[29] LEI L, LI S, HUANG H et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 26, 5686(2018).
[30] NGUYEN T Q H, PHAN H L, TUNG P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 1-8(2019).
[31] LI J, CHEN X, YI Z et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays[J]. Materials Today Energy, 16, 100390(2020).
[32] JIAO S, LI Y, YANG H et al. Numerical study of ultra-broadband wide-angle absorber[J]. Results in Physics, 24, 104146(2021).
[33] FENG Y, CAO Y, ZHANG H et al. TiN-based broadband wide-angle solar absorber[J]. Plasmonics, 19, 963-972(2024).
[34] LIU Z, LIU G, LIU X et al. Spatial and frequency-selective optical field coupling absorption in an ultra-thin random metasurface[J]. Optics Letters, 48, 1586-1589(2023).
[35] FENG Yue, LIU Hai, CHEN Cong et al. Broadband terahertz metamaterial absorber based on patterned graphene[J]. Acta Photonica Sinica, 51, 0923001(2022).
[36] ZHANG Xiaojian, ZHANG Quan, LAN Guilian et al. Nearly perfect absorber in borophene based on tamm plasmon polaritons(invited)[J]. Acta Photonica Sinica, 52, 1052404(2023).
[39] JIANG X, YUAN H, CHEN D et al. Metasurface based on inverse design for maximizing solar spectral absorption[J]. Advanced Optical Materials, 9, 2100575(2021).
Get Citation
Copy Citation Text
Shengxi JIAO, Xu YANG, Hanrui YANG. Design of Solar Absorber Based on Laminar and Nested Structure[J]. Acta Photonica Sinica, 2025, 54(3): 0323003
Category: Optical Device
Received: Sep. 6, 2024
Accepted: Dec. 16, 2024
Published Online: Apr. 22, 2025
The Author Email: Shengxi JIAO (jiaosx0228@163.com)