Journal of Fujian Normal University(Natural Science Edition), Volume. 41, Issue 4, 11(2025)
Deep Learning-Based Forecast of the 30-Day Average Temperature
[1] [1] SALIMI S, ALMUKTAR S A, SCHOLZ M. Impact of climate change on wetland ecosystems: a critical review of experimental wetlands[J]. Journal of Environmental Management, 2021, 286: 112160.
[3] [3] TAPIADOR F J, NAVARRO A, MORENO R, et al. Regional climate models: 30 years of dynamical downscaling[J]. Atmospheric Research, 2020, 235: 104785.
[4] [4] SOBHANI M, CAMPBELL A, SANGAMWAR S, et al. Combining weather stations for electric load forecasting[J]. Energies, 2019, 12(8): 1510.
[5] [5] ZIMMERMANN M, ZIEL F. Spatial weather, socio-economic and political risks in probabilistic load forecasting[EB/OL]. (2024-08-01) [2024-10-15]. https://arxiv.org/abs/2408.00507.
[6] [6] SCHULTZ M G, BETANCOURT C, GONG B, et al. Can deep learning beat numerical weather prediction?[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2194): 20200097.
[7] [7] PENG Y, LIU X, SU J, et al. Skill improvement of the yearly updated reforecasts in ECMWF S2S prediction from 2016 to 2022[J]. Atmospheric and Oceanic Science Letters, 2023, 16(5): 100357.
[8] [8] HAN L, CHEN M, CHEN K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444-1459.
[9] [9] BOCHENEK B, USTRNUL Z. Machine learning in weather prediction and climate analyses: applications and perspectives[J]. Atmosphere, 2022, 13(2): 180.
[10] [10] FAN Y, KRASNOPOLSKY V, VAN D D H, et al. Using artificial neural networks to improve CFS week-3-4 precipitation and 2-m air temperature forecasts[J]. Weather and Forecasting, 2023, 38(5): 637-654.
[11] [11] HU Y Y, PANG L, WANG Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days[J]. Journal of Applied Meteorological Science, 2023, 34(4): 426-437.
[12] [12] KONG W, LI H, YU C, et al. A deep spatio-temporal forecasting model for multi-site weather prediction post-processing[J]. Communications in Computational Physics, 2022, 31(1): 131-153.
[13] [13] ROY D S. Forecasting the air temperature at a weather station using deep neural networks[J]. Procedia Computer Science, 2020, 178: 38-46.
[14] [14] MAHESH B. Machine learning algorithms: a review[J]. International Journal of Science and Research, 2020, 9 (1): 381-386.
[15] [15] PATHAK J, SUBRAMANIAN S, HARRINGTON P, et al. Fourcastnet: a global data-driven high-resolution weather model using adaptive fourier neural operators[EB/OL]. (2022-02-22) [2024-10-15]. https://arxiv.org/abs/2202.11214.
[16] [16] CHEN L, ZHONG X, LI H, et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15(1): 6425.
[17] [17] SINGH M, ACHARYA N, PATEL P, et al. A modified deep learning weather prediction using cubed sphere for global precipitation[J]. Frontiers in Climate, 2023, 4: 1022624.
[18] [18] CUI J, YANG S, LI T. How well do the S2S models predict intraseasonal wintertime surface air temperature over mid-high-latitude Eurasia?[J]. Climate Dynamics, 2021, 57(1): 503-521.
[19] [19] National Centers for Environmental Information. Hourly climate data[EB/OL]. (2024-05-14) [2024-10-15]. https://www.ncei.noaa.gov/maps/hourly/.
[20] [20] OZBEK A, SEKERTEKIN A, BILGILI M, et al. Prediction of 10-min, hourly, and daily atmospheric air temperature: comparison of LSTM, ANFIS-FCM, and ARMA[J]. Arabian Journal of Geosciences, 2021, 14: 1-16.
Get Citation
Copy Citation Text
ZHANG Yujie, CHEN Xueying, LUO Haifeng, WENG Bin, HUANG Liqing, YOU Lijun. Deep Learning-Based Forecast of the 30-Day Average Temperature[J]. Journal of Fujian Normal University(Natural Science Edition), 2025, 41(4): 11
Received: Nov. 7, 2024
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: CHEN Xueying (qsx20231335@student.fjnu.edu.cn)