Chinese Journal of Lasers, Volume. 51, Issue 21, 2109002(2024)

Wide Field‐of‐View Multiscale Noncontact Photoacoustic Intelligent Defect‐Detection Algorithm

Jijing Chen1, Yihan Pi1, Yixuan Pang1, Hao Zhang1, Kaixuan Ding1, Ying Long1, Jiao Li1,2、*, and Zhen Tian1,2、**
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518067, Guangdong , China
  • show less
    Figures & Tables(12)
    Modeling of the elasto-optical process in flip-chip samples. (a) Elasto-optical model of an intrinsic silicon substrate coated with an aluminum film; (b) elasto-optical model of an intrinsic silicon substrate without an aluminum coating; (c) relationship between reflectivity variations ΔR and refractive index mismatch Δn at the boundary, for different δnmaterial values in the coated substrate; (d) relationship between reflectivity variations ΔR and refractive index mismatch Δn at the boundary, for different δnmaterial values in the uncoated substrate
    Construction and characterization of the NINC-PAM system. (a) Schematic diagram of the NINC-PAM system; (b) optical-mechanical joint scanning image of a tungsten wire mesh in water; (c) resolution characterization results of NINC-PAM
    Schematic diagrams of different improvement modules in Chip-YOLO. (a) Small object detection (SOD) layer; (b) SPPF module improved with LSKA; (c) RepGFPN
    Architecture diagram of the multi-scale defect-detection algorithm Chip-YOLO
    Preparation process of the flip-chip sample. (a) Spin coating; (b) dehydration; (c) photolithography; (d) development;
    Process of establishing a dataset of delamination defects in the flip-chip samples. (a) Imaging result from NINC-PAM;
    Intelligent detection results of various algorithms based on NINC-PAM (All images share a common scale bar, and all scale bars are set at 270 μm). (a) Chip-YOLO; (b) YOLOv3; (c) YOLOX; (d) YOLOv7; (e) YOLOv8; (f) Faster R-CNN; (g) corresponding bright-field microscopy image of the detection region
    • Table 1. Thermal and acoustic parameters of different materials in flip chips

      View table

      Table 1. Thermal and acoustic parameters of different materials in flip chips

      MaterialSpeed of sound /(m·s-1Thermal diffusivity /(m2·s-1Beam size of excitation /μmThermal relaxation time /nsPressure relaxation time /ns
      Silicon8433168.8×10-5[173102.270.36
      Aluminium6420189.8×10-5[19391.970.47
    • Table 2. Statistical results of defect sizes in defect datasets

      View table

      Table 2. Statistical results of defect sizes in defect datasets

      Size

      Defect pixel area /

      (pixel×pixel)

      Actual area of the defect /

      (pixel×pixel)

      Number of defectsProportion of defects /%
      Small<32×32<32×321510950.86
      Medium32×32 to 96×9632×32 to 96×96892430.04
      Large>96×96>96×96567319.10
    • Table 3. Performance comparison of different object detection algorithms on the validation dataset

      View table

      Table 3. Performance comparison of different object detection algorithms on the validation dataset

      AlgorithmAP /%Number of parameters /MBAmount of computation (GFLOPs)
      YOLOv349.661.5154.9
      YOLOX53.625.373.8
      YOLOv755.436.9104.7
      Faster R-CNN55.941.591.4
      Chip-YOLO60.112.439.8
    • Table 4. Performance comparison of the algorithm after introducing various enhancement modules

      View table

      Table 4. Performance comparison of the algorithm after introducing various enhancement modules

      Object detection algorithmAP /%Number of parameters /MBAmount of computation (GFLOPs)
      YOLOv856.810.628.8
      YOLOv8+SOD58.110.136.9
      YOLOv8+SOD+ LSKA58.711.237.8
      YOLOv8+SOD+ LSKA+RepGFPN (Chip-YOLO)60.112.439.8
    • Table 5. Intelligent detection results statistics of different algorithms

      View table

      Table 5. Intelligent detection results statistics of different algorithms

      Algorithm

      Maximum confidence /

      arb. units

      Minimum confidence /

      arb. units

      Average confidence /

      arb. units

      Confidence greater

      than 50% /%

      Inference

      time /ms

      Chip-YOLO0.950.310.624112.2
      YOLOv30.800.200.492028.3
      YOLOX0.860.210.501916.2
      YOLOv70.860.210.542912.1
      YOLOv80.920.240.56348.1
      Faster R-CNN0.950.360.634242.4
    Tools

    Get Citation

    Copy Citation Text

    Jijing Chen, Yihan Pi, Yixuan Pang, Hao Zhang, Kaixuan Ding, Ying Long, Jiao Li, Zhen Tian. Wide Field‐of‐View Multiscale Noncontact Photoacoustic Intelligent Defect‐Detection Algorithm[J]. Chinese Journal of Lasers, 2024, 51(21): 2109002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: holography and information processing

    Received: May. 15, 2024

    Accepted: Jun. 17, 2024

    Published Online: Oct. 31, 2024

    The Author Email: Li Jiao (jiaoli@tju.edu.cn), Tian Zhen (tianzhen@tju.edu.cn)

    DOI:10.3788/CJL240877

    CSTR:32183.14.CJL240877

    Topics