Acta Optica Sinica, Volume. 41, Issue 6, 0611001(2021)
Dual-State Numerical Dispersion Compensation Method for Catheter Based PS-OCT System
[1] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[9] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).
[10] Golubovic B, Bouma B E, Tearney G J et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+: Forsterite laser[J]. Optics Letters, 22, 1704-1706(1997).
[11] Yun S H. Tearney G J, de Boer J F, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003).
[14] Drexler W, Morgner U, Ghanta R K et al. Ultrahigh-resolution ophthalmic optical coherence tomography[J]. Nature Medicine, 7, 502-507(2001).
[15] Tearney G J, Bouma B E, Fujimoto J G. High-speed phase- and group-delay scanning with a grating-based phase control delay line[J]. Optics Letters, 22, 1811-1813(1997).
[18] Tearney G J, Boppart S A, Bouma B E et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 21, 543-545(1996).
[19] Tearney G J, Brezinski M E, Boppart S A et al. Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery[J]. Circulation, 94, 3013(1996).
[21] Fujimoto J G, Boppart S A, Tearney G J et al. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 82, 128-133(1999).
[22] Bouma B E, Tearney G J, Compton C C et al. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography[J]. Gastrointestinal Endoscopy, 51, 467-474(2000).
[23] Jang I K, Bouma B E, Kang D H et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. Journal of the American College of Cardiology, 39, 604-609(2002).
[25] Karanasos A, Villiger M et al. First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo[J]. European Heart Journal, 37, 1932(2016).
[26] Bouma B E, Villiger M, Otsuka K et al. Intravascular optical coherence tomography[J]. Biomedical Optics Express, 8, 2660-2686(2017).
[27] Villiger M, Otsuka K, Karanasos A et al. Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging[J]. JACC: Cardiovascular Imaging, 11, 1666-1676(2018).
[32] Oh W Y, Yun S H, Vakoc B J et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing[J]. Optics Express, 16, 1096-1103(2008).
[34] Baumann B, Choi W, Potsaid B et al. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit[J]. Optics Express, 20, 10229-10241(2012).
[37] Villiger M, Karanasos A, Ren J et al. Intravascular polarization sensitive optical coherence tomography in human patients[C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA., 1-2(2016).
Get Citation
Copy Citation Text
Zhenyang Ding, Tianduo Lai, Kuiyuan Tao, Yanan Zhu, Fengyu Zhu, Qingrui Li, Mingjian Shang, Jingqi Hu, Keliang Sun, Kun Liu, Junfeng Jiang, Tiegen Liu. Dual-State Numerical Dispersion Compensation Method for Catheter Based PS-OCT System[J]. Acta Optica Sinica, 2021, 41(6): 0611001
Category: Imaging Systems
Received: Aug. 12, 2020
Accepted: Nov. 2, 2020
Published Online: Apr. 7, 2021
The Author Email: Ding Zhenyang (zyding@tju.edu.cn)