Infrared Technology, Volume. 46, Issue 1, 1(2024)

Application of Metasurfaces in Microbolometers

Jun YANG, Jun YUAN*, Chunli YANG, Wenjin WANG, Jie ZHANG, and Huani LI
Author Affiliations
  • [in Chinese]
  • show less
    References(52)

    [1] [1] Veselago V G .The electrodynamics of substance with simultaneously negative values of ε and μ[J]. Physics-Uspekhi, 1968, 10: 509-514.

    [2] [2] Pendry J B. Negative refraction index makes perfect lens[J]. Phys. Rev. Lett., 2000, 85: 3966-3969.

    [3] [3] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett, 2000, 84(18): 4184-4187.

    [6] [6] YU N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. American Association for the Advancement of Science, 2011, 6054: 333-337.

    [7] [7] CHEN Houtong, Antoinette J Taylor, YU Nanfang. A review of metasurfaces: physics and applications[J/OL]. Optics, 2017, https://arxiv.org/abs/1605.07672.

    [8] [8] YU Nanfang, Federico Capasso. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150.

    [9] [9] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. Doi: 10.1021/nl300204s.

    [10] [10] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143.

    [11] [11] Peifer C, Grhic A. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys. Rev. Lett., 2013(110): 197401.

    [12] [12] LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201-594201.

    [13] [13] PU Mingbo, HU Chenggang, WANG Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18):17413-17420.

    [15] [15] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Publishing Group, 2014, 8(12): 889-898.

    [16] [16] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936.

    [17] [17] LIN D, FAN P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

    [18] [18] Khorasaninejad M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.

    [19] [19] CHEN K, FENG Y, Monticone F, et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 2017, 29(17): 1606422.

    [20] [20] ZHENG G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312.

    [21] [21] LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245.

    [22] [22] NI Xingjie, Alexander V Kildishev, Vladimir M Shalaev. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

    [23] [23] Kuznetsov S A, Astafev M A, Beruete M, et al. Planar holographic metasurfaces for Terahertz focusing[J]. Sci. Rep., 2015, 5: 7738.

    [24] [24] Yuk T I, CHEUNG S W, ZHU H L. Mechanically pattern reconfigurable antenna using metasurface[J]. IET Microwaves, Antennas & Propagation, 2015, 9(12): 1331-1336.

    [25] [25] ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891-2898.

    [26] [26] NI C, CHEN M, ZHANG Z, et al. Design of frequency and polarization reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 78-81.

    [27] [27] WAN X, ZHANG L, JIA S L, et al. Horn antenna with reconfigurable beam-refraction and polarization based on anisotropic huygens metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4427-4434.

    [28] [28] CAI H, CHEN S, ZOU C, et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves[J]. Adv. Opt. Mater., 2018, 6(14): 1800257.

    [29] [29] Tasolamprou A C, Koulouklidis A D, Daskalaki C, et al. Experimental demonstration of ultrafast thz modulation in a graphene-based thin film absorber through negative photoinduced conductivity[J]. ACS Author Choice, 2019, 6(3): 720-727.

    [30] [30] ZHAO X, WANG Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. Acs Photonics, 2019, 6(4): 830-837.

    [31] [31] CONG L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 2020, 32(28): 2001418.

    [32] [32] Mousavi S H, Khanikaev A B, Neuner B, et al. Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs[J]. Optics Express, 2011, 19(22): 22142-22155.

    [33] [33] ZHANG J, MEI Z, ZHANG W, et al. An ultrathin directional carpet cloak based on generalized snell's law[J]. Applied Physics Letters, 2013, 103(15): 1780.

    [34] [34] LIU S, XU H X, ZHANG H C, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417.

    [35] [35] NI Xingjie, WONG Zijing, Michael M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314.

    [36] [36] TAN X, ZHANG H, LI J, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245.

    [38] [38] Dereniak L Eustace. Infrared Detectors and Systems[M]. Hoboken: Wiley, 1996.

    [41] [41] Maier T, Brückl H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014.

    [42] [42] Smith E M, Nath J, Ginn J, et al. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers[C]// SPIE Defense + Security, 2016, Doi: 10.1117/12.2223954.

    [43] [43] LI Q, YU B Q, LI Z F. Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application[J]. Chinese Physics B, 2017(8): 269-274.

    [44] [44] JUNG J Y, SONG K, Choi J H, et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer[J]. Scientific Reports, 2017, 7(1): 430.

    [45] [45] Alkorjia O, Abdullah A, Koppula A. Metasurface based uncooled microbolometer with high fill factor[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, XXXIII, 2019: 2126-2129.

    [46] [46] Swett D W. Near zero index perfect metasurface absorber using inverted conformal mapping[J]. Scientific Reports, 2020, 10(1): 9731.

    [47] [47] Joseph J Talghader, Anand S Gawarikar, Ryan P Shea. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24-e24.

    [48] [48] Thomas Maier, Hubert Brückl. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014.

    [49] [49] Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22): 3766-3768.

    [50] [50] Kim H, Neikirk D P, Andresen B F, et al. Three-dimensional dual-band stacked microbolometer design using resistive dipoles and slots[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 19.

    [51] [51] JUNG J Y, LEE J, CHOI D G, et al. Wavelength-selective infrared metasurface absorber for multispectral thermal detection[J]. IEEE Photonics Journal, 2015, 7(6): 1-11.

    [52] [52] DU K, LI Q, ZHANG W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics Journal, 2015, 7(3): 1-8.

    [53] [53] LIU Tao, QU Chuang, Mahmoud Almasri, et al. Design and analysis of frequency-selective surface enabled microbolometers[C]//Infrared Technology and Applications XLII. SPIE, 2016, 9819: 487-494.

    [54] [54] LIU T, Abdullah A A, Alkorjia O, et al. Device architecture for metasurface integrated Uncooled SixGeyO1-x-y Infrared Microbolometers (Conference Presentation)[C]// Infrared Technology and Applications XLV, 2019, 11002: 372-378.

    [55] [55] Creazzo T A, Zablocki M J, Zaman L, et al. Frequency selective infrared optical filters for micro-bolometers [C]// SPIE Defense + Security, 2017, 10194: 611-618.

    [56] [56] Gallacher K, Millar R W, Giliberti V, et al. Mid-infrared n-Ge on Si plasmonic based microbolometer sensors[C]//IEEE International Conference on Group IV Photonics, 2017: 3-4.

    [57] [57] DAO T D, Doan A T, Ishii S, et al. MEMS-based wavelength-selective bolometers[J]. Micromachines, 2019, 10(6): 416.

    [58] [58] JIANG S, LI J, LI J, et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging[J]. Optics Express, 2022, 30(6): 9065-9087.

    Tools

    Get Citation

    Copy Citation Text

    YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology, 2024, 46(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 4, 2022

    Accepted: --

    Published Online: May. 27, 2024

    The Author Email: Jun YUAN (yuanjun5516@tom.com)

    DOI:

    Topics