Optical Technique, Volume. 49, Issue 2, 156(2023)
Research on permanent magnet Zeeman slower based on Doppler velocimetry
[1] [1] Heavner T P, Donley E A, Levi F, et al. First accuracy evaluation of NIST-F2[J]. Metrologia,2014,51(3):174.
[2] [2] Weyers S, Gerginov V, Nemitz N, et al. Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2[J]. Physics,2012,49(1):82-87.
[3] [3] Nicholson T L, Campbell S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications,2015,6(1):1-8.
[4] [4] Falke S, Lemke N, Grebing C, et al. A strontium lattice clock with 3×10-17 inaccuracy and its frequency[J]. New Journal of Physics,2014,16(7):073023.
[5] [5] Karshenboim S G, Peik E. Astrophysics, atomic clocks and fundamental constants[J]. The European Physical Journal Special Topics,2008,163(1):1-7.
[6] [6] Matthias Lezius T W, Christian Deutsch, et al. Space-borne frequency comb metrology[J]. Optica,2016,3(12):1381-1387.
[7] [7] Pd A, Npa B, Es C, et al. A new test of gravitational redshift using galileo satellites: the great experiment-sciencedirect[J]. Comptes Rendus Physique,2019,20(3):176-182.
[8] [8] Deschenes J D, Sinclair L C, Giorgetta F R, et al. Synchronization of distant optical clocks at the femtosecond level[J]. Physics,2015,16(1):519-530.
[9] [9] Esraa A K, Yasmine E, Tawfik I, et al. Electrical and optical clock and data recovery in optical access networks: a comparative study[J]. International Journal of Communication Systems,2016,29(17):2555-2564.
[10] [10] Grotti J, Koller S, Vogt S, et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics,2018,14(5):437-441.
[11] [11] Poli N, Oates C W, Gill P, et al. Optical atomic clocks[J]. Rivista Del Nuovo Cimento,2014,36(12):555-624.
[12] [12] Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature,2005,435(7040):321-324.
[13] [13] Singh Y. Development of a strontium optical lattice clock for space applications[J]. 41st COSPAR Scientific Assembly,2016,41(H0):13-16
[14] [14] Takamoto M, Ushijima I, Ohmae N, et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Photonics,2020,14(7):411-415.
[15] [15] Grotti J, Koller S, Vogt S, et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics,2018,14(5):437-441.
[16] [16] Ohmae N, Takamoto M, Takahashi Y, et al. Transportable strontium optical lattice clocks operated outside laboratory at the level of 10-18 uncertainty[J]. Advanced Quantum Technologies,2021,4(8):2100015.
[17] [17] Origlia S, Pramod M S, Schiller S, et al. Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms[J]. Physical Review A,2018,98(5):053443.
[18] [18] Cao J, Zhang P, Shang J, et al. A compact, transportable single-ion optical clock with 7.8×10-17 systematic uncertainty[J]. Applied Physics B,2017,4(123):1-9.
[19] [19] Huang Y, Zhang H, Zhang B, et al. Geopotential measurement with a robust, transportable Ca+ optical clock[J]. Physical Review A,2020,102(5):050802.
[22] [22] Guo F, Tan W, Zhou C H, et al. A proof-of-concept model of compact and high-performance 87Sr optical lattice clock for space[J]. AIP Advances,2021,11(12):125116.
[23] [23] Kong D-H, Wang Z-H, Guo F, et al. A transportable optical lattice clock at the National Time Service Center[J]. Chinese Physics B,2020,29(7):070602.
[24] [24] Ovchinnikov Y B. A permanent Zeeman slower for Sr atomic clock[J]. The European Physical Journal Special Topics,2008,163(1):95-100.
[25] [25] Cheiney P, Carraz O, Bartoszek-Bober D, et al. A Zeeman slower design with permanent magnets in a Halbach configuration[J]. Review of Scientific Instruments,2011,82(6):063115.
[26] [26] Garwood D, Liu L, Mongkolkiattichai J, et al. A hybrid Zeeman slower for lithium[J]. Review of Scientific Instruments,2022,93(3):033202.
[27] [27] Wang Q, Lin Y G, Gao F L, et al. A longitudinal Zeeman slower based on Ring-shaped permanent magnets for a strontium optical lattice clock[J]. Chinese Physics Letters,2015,32(10):100701.
[28] [28] Peng Q L, Mcmurry S M, Coey J. Axial magnetic field produced by axially and radially magnetized permanent rings[J]. Journal of Magnetism and Magnetic Materials,2004,268(1-2):165-169.
[30] [30] Hill I R, Ovchinnikov Y B, Bridge E M, et al. A simple, configurable, permanent magnet Zeeman Slower for Sr[C]∥2012 European Frequency and Time Forum.Gothenburg,Sweden:IEEE,2012:545-549.
[31] [31] Gupta M, Herschbach D. Slowing and speeding molecular beams by means of a rapidly rotating source[J]. The Journal of Physical Chemistry A,2001,105(9):1626-37.
[32] [32] John M Doyle, et al. Buffer-gas loading of atoms and molecules into a magnetic trap[J]. Physical Review A,1995,52(4):R2515-R8.
[33] [33] Metcalf H. Laser Deceleration of an atomic beam[J]. Physical Review Letters,1999,48(9):73-86.
[34] [34] Steane A, Chowdhury M, Foot C. Radiation force in the magneto-optical trap[J]. Josa B,1992,9(12):2142-2158.
[40] [40] Savard T, Granade S, O’Hara K, et al. Raman-induced magnetic resonance imaging of atoms in a magneto-optical trap[J]. Physical Review A,1999,60(6):4788.
[41] [41] Sansonetti J, Nave G. Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (SrI)[J]. Journal of Physical and Chemical Reference Data,2010,39(3):033103.
Get Citation
Copy Citation Text
HAN Jianxin, SHI Yaqi, ZHAO Yali, ZHAO Yan, BAI Xuemin. Research on permanent magnet Zeeman slower based on Doppler velocimetry[J]. Optical Technique, 2023, 49(2): 156
Category:
Received: Jul. 25, 2022
Accepted: --
Published Online: Apr. 16, 2023
The Author Email: Jianxin HAN (hanjianxinabc@126.com)
CSTR:32186.14.