Molecular Plant, Volume. 18, Issue 8, 1310(2025)

A developmental switch controls cell-to-cell transport in roots via pectin-linked plasmodesmata changes

Jacquier Lé, Fiorenza Celeste Aurora, Robe Kevin, Han Jian-Pu, Schmitt Alexandra, Clé, Fuchs Christelle, Ramakrishna Priya, Loubé, Kalmbach Lothar, Lefebvre-Legendre Linnka, and Barberon Marie
References(95)

[1] [1] Amsbury, S., Kirk, P., and Benitez-Alfonso, Y.(2017). Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. J. Exp. Bot.69:105-115. https://doi.org/10.1093/jxb/erx337.

[2] [2] Andersen, M.C.F., Boos, I., Marcus, S.E., Kraun, S.K., Rydahl, M.G., Willats, W.G.T., Knox, J.P., and Clausen, M.H.(2016). Characterization of the LM5 pectic galactan epitope with synthetic analogues of -1,4-d-galactotetraose. Carbohydr. Res.436:36-40. https://doi.org/10.1016/j.carres.2016.10.012.

[3] [3] Barberon, M., Vermeer, J.E.M., De Bellis, D., Wang, P., Naseer, S., Andersen, T.G., Humbel, B.M., Nawrath, C., Takano, J., Salt, D.E., and Geldner, N.(2016). Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell164:447-459. https://doi.org/10.1016/j.cell.2015.12.021.

[4] [4] Bayer, E.M., and Benitez-Alfonso, Y.(2024). Plasmodesmata: Channels Under Pressure. Annu. Rev. Plant Biol.75:291-317. https://doi.org/10.1146/annurev-arplant-070623-093110.

[5] [5] Benitez-Alfonso, Y., Faulkner, C., Pendle, A., Miyashima, S., Helariutta, Y., and Maule, A.(2013). Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell26:136-147. https://doi.org/10.1016/j.devcel.2013.06.010.

[6] [6] Bindels, D.S., Haarbosch, L., van Weeren, L., Postma, M., Wiese, K.E., Mastop, M., Aumonier, S., Gotthard, G., Royant, A., Hink, M.A., and Gadella, T.W.J., Jr.(2017). mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods14:53-56. https://doi.org/10.1038/nmeth.4074.

[7] [7] Brault, M.L., Petit, J.D., Immel, F., Nicolas, W.J., Glavier, M., Brocard, L., Gaston, A., Fouch, M., Hawkins, T.J., Crowet, J.M., et al.(2019). Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. EMBO Rep.20:e47182. https://doi.org/10.15252/embr.201847182.

[8] [8] Busch, F.A., Ainsworth, E.A., Amtmann, A., Cavanagh, A.P., Driever, S.M., Ferguson, J.N., Kromdijk, J., Lawson, T., Leakey, A.D.B., Matthews, J.S.A., et al.(2024). A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant Cell Environ.47:3344-3364. https://doi.org/10.1111/pce.14815.

[9] [9] Calvo-Polanco, M., Ribeyre, Z., Dauzat, M., Reyt, G., Hidalgo-Shrestha, C., Diehl, P., Frenger, M., Simonneau, T., Muller, B., Salt, D.E., et al.(2021). Physiological roles of Casparian strips and suberin in the transport of water and solutes. New Phytol.232:2295-2307. https://doi.org/10.1111/nph.17765.

[10] [10] Casero, P.J., and Knox, J.P.(1995). The monoclonal antibody JIM5 indicates patterns of pectin deposition in relation to pit fields at the plasma-membrane-face of tomato pericarp cell walls. Protoplasma188:133-137. https://doi.org/10.1007/BF01276804.

[11] [11] Cheval, C., and Faulkner, C.(2018). Plasmodesmal regulation during plant-pathogen interactions. New Phytol.217:62-67. https://doi.org/10.1111/nph.14857.

[12] [12] Christensen, N.M., Faulkner, C., and Oparka, K.(2009). Evidence for Unidirectional Flow through Plasmodesmata. Plant Physiol.150:96-104. https://doi.org/10.1104/pp.109.137083.

[13] [13] Clarkson, D.T.(1993). Roots and the Delivery of Solutes to the Xylem. Phil. Trans.: Biol. Sci.341:5-17.

[14] [14] Comtet, J., Turgeon, R., and Stroock, A.D.(2017). Phloem Loading through Plasmodesmata: A Biophysical Analysis. Plant Physiol.175:904-915. https://doi.org/10.1104/pp.16.01041.

[15] [15] Couvreur, V., Faget, M., Lobet, G., Javaux, M., Chaumont, F., and Draye, X.(2018). Going with the Flow: Multiscale Insights into the Composite Nature of Water Transport in Roots. Plant Physiol.178:1689-1703. https://doi.org/10.1104/pp.18.01006.

[16] [16] Cui, H., Levesque, M.P., Vernoux, T., Jung, J.W., Paquette, A.J., Gallagher, K.L., Wang, J.Y., Blilou, I., Scheres, B., and Benfey, P.N.(2007). An Evolutionarily Conserved Mechanism Delimiting SHR Movement Defines a Single Layer of Endodermis in Plants. Science316:421-425. https://doi.org/10.1126/science.1139531.

[17] [17] de Rufz de Lavison, J.(1910). Du mode de pntration de quelques sels dans la plante vivante. Rev. Gen. Bot.22:225-241.

[18] [18] De Swaef, T., Pieters, O., Appeltans, S., Borra-Serrano, I., Coudron, W., Couvreur, V., Garr, S., Lootens, P., Nicola, B., Pols, L., et al.(2022). On the pivotal role of water potential to model plant physiological processes. in silico Plants4:diab038. https://doi.org/10.1093/insilicoplants/diab038.

[19] [19] Delgado, L.D., Nunez-Pascual, V., Riveras, E., Ruffel, S., and Gutirrez, R.A.(2024). Recent advances in local and systemic nitrate signaling in Arabidopsis thaliana. Curr. Opin. Plant Biol.81:102605. https://doi.org/10.1016/j.pbi.2024.102605.

[20] [20] Diet, A., Link, B., Seifert, G.J., Schellenberg, B., Wagner, U., Pauly, M., Reiter, W.D., and Ringli, C.(2006). The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase. Plant Cell18:1630-1641. https://doi.org/10.1105/tpc.105.038653.

[21] [21] Doblas, V.G., Smakowska-Luzan, E., Fujita, S., Alassimone, J., Barberon, M., Madalinski, M., Belkhadir, Y., and Geldner, N.(2017). Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science355:280-284.

[22] [22] Dong, S., Jing, X., Lin, S., Lu, K., Li, W., Lu, J., Li, M., Gao, S., Lu, S., Zhou, D., et al.(2022). Root Hair Apex is the Key Site for Symplastic Delivery of Graphene into Plants. Environ. Sci. Technol.56:12179-12189. https://doi.org/10.1021/acs.est.2c01926.

[23] [23] Duan, Q., Kita, D., Li, C., Cheung, A.Y., and Wu, H.M.(2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl. Acad. Sci. USA107:17821-17826. https://doi.org/10.1073/pnas.1005366107.

[24] [24] Duckett, C.M., Oparka, K.J., Prior, D.A.M., Dolan, L., and Roberts, K.(1994). Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development120:3247-3255. https://doi.org/10.1242/dev.120.11.3247.

[25] [25] Faulkner, C., Akman, O.E., Bell, K., Jeffree, C., and Oparka, K.(2008). Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell20:1504-1518. https://doi.org/10.1105/tpc.107.056903.

[26] [26] Fernandez-Calvino, L., Faulkner, C., Walshaw, J., Saalbach, G., Bayer, E., Benitez-Alfonso, Y., and Maule, A.(2011). Arabidopsis Plasmodesmal Proteome. PLoS One6:e18880. https://doi.org/10.1371/journal.pone.0018880.

[27] [27] Gao, C., Liu, X., De Storme, N., Jensen, K.H., Xu, Q., Yang, J., Liu, X., Chen, S., Martens, H.J., Schulz, A., and Liesche, J.(2020). Directionality of Plasmodesmata-Mediated Transport in Arabidopsis Leaves Supports Auxin Channeling. Curr. Biol.30:1970-1977.e4. https://doi.org/10.1016/j.cub.2020.03.014.

[28] [28] Geldner, N., Dnervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.-D., and Chory, J.(2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J.59:169-178. https://doi.org/10.1111/j.1365-313X.2009.03851.x.

[29] [29] Gerlitz, N., Gerum, R., Sauer, N., and Stadler, R.(2018). Photoinducible DRONPA-s: a new tool for investigating cell-cell connectivity. Plant J.94:751-766. https://doi.org/10.1111/tpj.13918.

[30] [30] Gombos, S., Miras, M., Howe, V., Xi, L., Pottier, M., Kazemein Jasemi, N.S., Schladt, M., Ejike, J.O., Neumann, U., Hnsch, S., et al.(2023). A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. New Phytol.238:637-653. https://doi.org/10.1111/nph.18730.

[31] [31] Gonalves, B., Maugarny-Cals, A., Adroher, B., Cortizo, M., Borrega, N., Blein, T., Hasson, A., Gineau, E., Mouille, G., Laufs, P., and Arnaud, N.(2017). GDP-L-fucose is required for boundary definition in plants. J. Exp. Bot.68:5801-5811. https://doi.org/10.1093/jxb/erx402.

[32] [32] Grison, M.S., Kirk, P., Brault, M.L., Wu, X.N., Schulze, W.X., Benitez-Alfonso, Y., Immel, F., and Bayer, E.M.(2019). Plasma Membrane-Associated Receptor-like Kinases Relocalize to Plasmodesmata in Response to Osmotic Stress. Plant Physiol.181:142-160. https://doi.org/10.1104/pp.19.00473.

[33] [33] Jay, F., Brioudes, F., Novakovi, L., Imboden, A., Benitez-Alfonso, Y., and Voinnet, O.(2025). A pectin acetyl-transferase facilitates secondary plasmodesmata formation and RNA silencing movement between plant cells. Plant J.122:e70194. https://doi.org/10.1111/tpj.70194.

[34] [34] Julkowska, M.M., Saade, S., Agarwal, G., Gao, G., Pailles, Y., Morton, M., Awlia, M., and Tester, M.(2019). MVApp-Multivariate Analysis Application for Streamlined Data Analysis and Curation. Plant Physiol.180:1261-1276. https://doi.org/10.1104/pp.19.00235.

[35] [35] Kalmbach, L., Bourdon, M., Belevich, I., Safran, J., Lemaire, A., Heo, J.-O., Otero, S., Blob, B., Pelloux, J., Jokitalo, E., and Helariutta, Y.(2023). Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. Curr. Biol.33:926-939.e9. https://doi.org/10.1016/j.cub.2023.01.038.

[36] [36] Karimi, M., Bleys, A., Vanderhaeghen, R., and Hilson, P.(2007). Building blocks for plant gene assembly. Plant Physiol.145:1183-1191. https://doi.org/10.1104/pp.107.110411.

[37] [37] Knoblauch, M., Vendrell, M., de Leau, E., Paterlini, A., Knox, K., Ross-Elliot, T., Reinders, A., Brockman, S.A., Ward, J., and Oparka, K.(2015). Multispectral Phloem-Mobile Probes: Properties and Applications. Plant Physiol.167:1211-1220. https://doi.org/10.1104/pp.114.255414.

[38] [38] Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R.(1996). Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol.116:71-76. https://doi.org/10.1006/jsbi.1996.0013.

[39] [39] Kremers, G.-J., Goedhart, J., van den Heuvel, D.J., Gerritsen, H.C., and Gadella, T.W.J.(2007). Improved Green and Blue Fluorescent Proteins for Expression in Bacteria and Mammalian Cells. Biochemistry46:3775-3783. https://doi.org/10.1021/bi0622874.

[40] [40] Kuhn, B.M., Geisler, M., Bigler, L., and Ringli, C.(2011). Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol.156:585-595. https://doi.org/10.1104/pp.111.175976.

[41] [41] Lee, J.-Y., Wang, X., Cui, W., Sager, R., Modla, S., Czymmek, K., Zybaliov, B., van Wijk, K., Zhang, C., Lu, H., and Lakshmanan, V.(2011). A Plasmodesmata-Localized Protein Mediates Crosstalk between Cell-to-Cell Communication and Innate Immunity in Arabidopsis. Plant Cell23:3353-3373. https://doi.org/10.1105/tpc.111.087742.

[42] [42] Li, B., Kamiya, T., Kalmbach, L., Yamagami, M., Yamaguchi, K., Shigenobu, S., Sawa, S., Danku, J.M.C., Salt, D.E., Geldner, N., and Fujiwara, T.(2017). Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. Curr. Biol.27:758-765.

[43] [43] Li, Z.P., Paterlini, A., Glavier, M., and Bayer, E.M.(2021). Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell. Mol. Life Sci.78:799-816. https://doi.org/10.1007/s00018-020-03622-8.

[44] [44] Liu, X., Cui, H., Zhang, B., Song, M., Chen, S., Xiao, C., Tang, Y., and Liesche, J.(2021). Reduced pectin content of cell walls prevents stress-induced root cell elongation in Arabidopsis. J. Exp. Bot.72:1073-1084. https://doi.org/10.1093/jxb/eraa533.

[45] [45] Ma, F., and Peterson, C.A.(2001). Frequencies of plasmodesmata in Allium cepa L. roots: implications for solute transport pathways. J. Exp. Bot.52:1051-1061. https://doi.org/10.1093/jexbot/52.358.1051.

[46] [46] Malivert, A., and Hamant, O.(2023). Why is FERONIA pleiotropic? Nat. Plants9:1018-1025. https://doi.org/10.1038/s41477-023-01434-9.

[47] [47] Marques-Bueno, M.M., Morao, A.K., Cayrel, A., Platre, M.P., Barberon, M., Caillieux, E., Colot, V., Jaillais, Y., Roudier, F., and Vert, G.(2016). A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J.85:320-333. https://doi.org/10.1111/tpj.13099.

[48] [48] Mehra, P., Pandey, B.K., Melebari, D., Banda, J., Leftley, N., Couvreur, V., Rowe, J., Anfang, M., De Gernier, H., Morris, E., et al.(2022). Hydraulic flux-responsive hormone redistribution determines root branching. Science378:762-768. https://doi.org/10.1126/science.add3771.

[49] [49] Mellor, N.L., Vo, U., Janes, G., Bennett, M.J., Wells, D.M., and Band, L.R.(2020). Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development147:dev181669. https://doi.org/10.1242/dev.181669.

[50] [50] Miras, M., Pottier, M., Schladt, T.M., Ejike, J.O., Redzich, L., Frommer, W.B., and Kim, J.Y.(2022). Plasmodesmata and their role in assimilate translocation. J. Plant Physiol.270:153633. https://doi.org/10.1016/j.jplph.2022.153633.

[51] [51] Mouille, G., Ralet, M.C., Cavelier, C., Eland, C., Effroy, D., Hmaty, K., McCartney, L., Truong, H.N., Gaudon, V., Thibault, J.F., et al.(2007). Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgilocalized protein with a putative methyltransferase domain. Plant J.50:605-614. https://doi.org/10.1111/j.1365-313X.2007.03086.x.

[52] [52] Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C., and Geldner, N.(2012). Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci. USA109:10101-10106.

[53] [53] O'Lexy, R., Kasai, K., Clark, N., Fujiwara, T., Sozzani, R., and Gallagher, K.L.(2018). Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. J. Exp. Bot.69:3715-3728. https://doi.org/10.1093/jxb/ery171.

[54] [54] O'Neill, M.A., Eberhard, S., Albersheim, P., and Darvill, A.G.(2001). Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science294:846-849. https://doi.org/10.1126/science.1062319.

[55] [55] Oka, T., Nemoto, T., and Jigami, Y.(2007). Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J. Biol. Chem.282:5389-5403.

[56] [56] Oparka, K.J., Duckett, C.M., Prior, D.A.M., and Fisher, D.B.(1994). Realtime imaging of phloem unloading in the root tip of Arabidopsis. Plant J.6:759-766. https://doi.org/10.1046/j.1365-313X.1994.6050759.x.

[57] [57] Orfila, C., and Knox, J.P.(2000). Spatial Regulation of Pectic Polysaccharides in Relation to Pit Fields in Cell Walls of Tomato Fruit Pericarp1. Plant Physiol.122:775-782. https://doi.org/10.1104/pp.122.3.775.

[58] [58] Panter, P.E., Kent, O., Dale, M., Smith, S.J., Skipsey, M., Thorlby, G., Cummins, I., Ramsay, N., Begum, R.A., Sanhueza, D., et al.(2019). MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol.224:1518-1531. https://doi.org/10.1111/nph.16209.

[59] [59] Pascut, F.C., Couvreur, V., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., Calvo-Polanco, M., Casimiro, I., Maurel, C., Salt, D.E., et al.(2021). Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nat. Commun.12:4682. https://doi.org/10.1038/s41467-021-24913-z.

[60] [60] Paterlini, A., Sechet, J., Immel, F., Grison, M.S., Pilard, S., Pelloux, J., Mouille, G., Bayer, E.M., and Voxeur, A.(2022). Enzymatic fingerprinting reveals specific xyloglucan and pectin signatures in the cell wall purified with primary plasmodesmata. Front. Plant Sci.13:1020506. https://doi.org/10.3389/fpls.2022.1020506.

[61] [61] Prez-Sancho, J., Smokvarska, M., Dubois, G., Glavier, M., Sritharan, S., Moraes, T.S., Moreau, H., Dietrich, V., Platre, M.P., Paterlini, A., et al.(2025). Plasmodesmata act as unconventional membrane contact sites regulating intercellular molecular exchange in plants. Cell188:958-977.e923. https://doi.org/10.1016/j.cell.2024.11.034.

[62] [62] Pfister, A., Barberon, M., Alassimone, J., Kalmbach, L., Lee, Y., Vermeer, J.E.M., Yamazaki, M., Li, G., Maurel, C., Takano, J., et al.(2014). A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife3:e03115.

[63] [63] R Core Team.(2023). R: A Language and Environment for Statistical Computing (Vienna, Austria: R Foundation for Statistical Computing).

[64] [64] Ralet, M.C., Tranquet, O., Poulain, D., Mose, A., and Guillon, F.(2010). Monoclonal antibodies to rhamnogalacturonan I backbone. Planta231:1373-1383. https://doi.org/10.1007/s00425-010-1116-y.

[65] [65] Ramakrishna, P., and Barberon, M.(2019). Polarized transport across root epithelia. Curr. Opin. Plant Biol.52:23-29. https://doi.org/10.1016/j.pbi.2019.05.010.

[66] [66] Ringli, C., Bigler, L., Kuhn, B.M., Leiber, R.-M., Diet, A., Santelia, D., Frey, B., Pollmann, S., and Klein, M.(2008). The Modified Flavonol Glycosylation Profile in the Arabidopsis rol1 Mutants Results in Alterations in Plant Growth and Cell Shape Formation. Plant Cell20:1470-1481. https://doi.org/10.1105/tpc.107.053249.

[67] [67] Robards, A.W., Jackson, S.M., Clarkson, D.T., and Sanderson, J.(1973). The structure of barley roots in relation to the transport of ions into the stele. Protoplasma77:291-311. https://doi.org/10.1007/BF01276765.

[68] [68] Robe, K., Conejero, G., Gao, F., Lefebvre-Legendre, L., Sylvestre-Gonon, E., Rofidal, V., Hem, S., Rouhier, N., Barberon, M., Hecker, A., et al.(2021). Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. New Phytol.229:2062-2079. https://doi.org/10.1111/nph.17090.

[69] [69] Roppolo, D., De Rybel, B., Dnervaud Tendon, V., Pfister, A., Alassimone, J., Vermeer, J.E.M., Yamazaki, M., Stierhof, Y.-D., Beeckman, T., and Geldner, N.(2011). A novel protein family mediates Casparian strip formation in the endodermis. Nature473:380-383.

[70] [70] Ross-Elliott, T.J., Jensen, K.H., Haaning, K.S., Wager, B.M., Knoblauch, J., Howell, A.H., Mullendore, D.L., Monteith, A.G., Paultre, D., Yan, D., et al.(2017). Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife6:e24125. https://doi.org/10.7554/eLife.24125.

[71] [71] Roy, S., Watada, A.E., and Wergin, W.P.(1997). Characterization of the Cell Wall Microdomain Surrounding Plasmodesmata in Apple Fruit. Plant Physiol.114:539-547. https://doi.org/10.1104/pp.114.2.539.

[72] [72] Saffer, A.M., Carpita, N.C., and Irish, V.F.(2017). Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Curr. Biol.27:2248-2259.e4. https://doi.org/10.1016/j.cub.2017.06.032.

[73] [73] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.,

[74] [74] et al.(2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods9:676-682. https://doi.org/10.1038/nmeth.2019.

[75] [75] Schreiber, L., Breiner, H.-W., Riederer, M., Dggelin, M., and Guggenheim, R.(1994). The Casparian Strip of Clivia miniata Reg. Roots: Isolation, Fine Structure and Chemical Nature. Bot. Acta107:353-361. https://doi.org/10.1111/j.1438-8677.1994.tb00807.x.

[76] [76] Schumacher, I., Ndinyanka Fabrice, T., Abdou, M.T., Kuhn, B.M., Voxeur, A., Herger, A., Roffler, S., Bigler, L., Wicker, T., and Ringli, C.(2021). Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells10:685. https://doi.org/10.3390/cells10030685.

[77] [77] Shimada, T.L., Shimada, T., and Hara-Nishimura, I.(2010). A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J.61:519-528.

[78] [78] Shukla, V., Han, J.P., Clard, F., Lefebvre-Legendre, L., Gully, K., Flis, P., Berhin, A., Andersen, T.G., Salt, D.E., Nawrath, C., et al.(2021). Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. Proc. Natl. Acad. Sci. USA118:e2101730118. https://doi.org/10.1073/pnas.2101730118.

[79] [79] Siligato, R., Wang, X., Yadav, S.R., Lehesranta, S., Ma, G., Ursache, R., Sevilem, I., Zhang, J., Gorte, M., Prasad, K., et al.(2016). MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants. Plant Physiol.170:627-641.

[80] [80] Sivaguru, M., Fujiwara, T., Samaj, J., Baluska, F., Yang, Z., Osawa, H., Maeda, T., Mori, T., Volkmann, D., and Matsumoto, H.(2000). Aluminum-induced 1 -> 3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol.124:991-1006. https://doi.org/10.1104/pp.124.3.991.

[81] [81] Stadler, R., Wright, K.M., Lauterbach, C., Amon, G., Gahrtz, M., Feuerstein, A., Oparka, K.J., and Sauer, N.(2005). Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J.41:319-331. https://doi.org/10.1111/j.1365-313X.2004.02298.x.

[82] [82] Stckle, D., Reyes-Hernndez, B.J., Barro, A.V., Nenadi, M., Winter, Z., Marc-Martin, S., Bald, L., Ursache, R., Fujita, S., Maizel, A., and Vermeer, J.E.(2022). Microtubule-based perception of mechanical conflicts controls plant organ morphogenesis. Sci. Adv.8:eabm4974. https://doi.org/10.1126/sciadv.abm4974.

[83] [83] Su, Y., Feng, T., Liu, C.B., Huang, H., Wang, Y.L., Fu, X., Han, M.L., Zhang, X., Huang, X., Wu, J.C., et al.(2023). The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. Nat. Plants9:1968-1977. https://doi.org/10.1038/s41477-023-01555-1.

[84] [84] Torode, T.A., O'Neill, R., Marcus, S.E., Cornuault, V., Pose, S., Lauder, R.P., Kraun, S.K., Rydahl, M.G., Andersen, M.C.F., Willats, W.G.T., et al.(2018). Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics. Plant Physiol.176:1547-1558. https://doi.org/10.1104/pp.17.01568.

[85] [85] Ursache, R., Andersen, T.G., Marhav, P., and Geldner, N.(2018). A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J.93:399-412. https://doi.org/10.1111/tpj.13784.

[86] [86] Vatn, A., Dettmer, J., Wu, S., Stierhof, Y.-D., Miyashima, S., Yadav, S.R., Roberts, C.J., Campilho, A., Bulone, V., Lichtenberger, R., et al.(2011). Callose Biosynthesis Regulates Symplastic Trafficking during Root Development. Dev. Cell21:1144-1155. https://doi.org/10.1016/j.devcel.2011.10.006.

[87] [87] Verhertbruggen, Y., Marcus, S.E., Haeger, A., Ordaz-Ortiz, J.J., and Knox, J.P.(2009). An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res.344:1858-1862. https://doi.org/10.1016/j.carres.2008.11.010.

[88] [88] Vermeer, J.E.M., von Wangenheim, D., Barberon, M., Lee, Y., Stelzer, E.H.K., Maizel, A., and Geldner, N.(2014). A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in Arabidopsis. Science343:178-183.

[89] [89] Wachsman, G., Modliszewski, J.L., Valdes, M., and Benfey, P.N.(2017). A SIMPLE Pipeline for Mapping Point Mutations. Plant Physiol.174:1307-1313. https://doi.org/10.1104/pp.17.00415.

[90] [90] Wang, Y., Perez-Sancho, J., Platre, M.P., Callebaut, B., Smokvarska, M., Ferrer, K., Luo, Y., Nolan, T.M., Sato, T., Busch, W., et al.(2023). Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones. Nat. Chem. Biol.19:1331-1341. https://doi.org/10.1038/s41589-023-01346-x.

[91] [91] Warmbrodt, R.D.(1985a). Studies on the Root of Zea mays L.-Structure of the Adventitious Roots with Respect to Phloem Unloading. Bot. Gaz.146:169-180.

[92] [92] Warmbrodt, R.D.(1985b). Studies on the Root of Hordeum vulgare L.-Ultrastructure of the Seminal Root with Special Reference to the Phloem. Am. J. Bot.72:414-432. https://doi.org/10.2307/2443534.

[93] [93] Warmbrodt, R.D.(1986). Structural Aspects of the Primary Tissues of the Cucurbita pepo L. Root with Special Reference to the Phloem. New Phytol.102:175-192.

[94] [94] Yang, H.Q., and Jie, Y.-L.(2005). Uptake and transport of calcium in plants. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao31:227-234.

[95] [95] Zhu, T., Lucas, W.J., and Rost, T.L.(1998). Directional cell-to-cell communication in the Arabidopsis root apical meristem I. An ultrastructural and functional analysis. Protoplasma203:35-47. https://doi.org/10.1007/BF01280585.

Tools

Get Citation

Copy Citation Text

Jacquier Lé, Fiorenza Celeste Aurora, Robe Kevin, Han Jian-Pu, Schmitt Alexandra, Clé, Fuchs Christelle, Ramakrishna Priya, Loubé, Kalmbach Lothar, Lefebvre-Legendre Linnka, Barberon Marie. A developmental switch controls cell-to-cell transport in roots via pectin-linked plasmodesmata changes[J]. Molecular Plant, 2025, 18(8): 1310

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Dec. 17, 2024

Accepted: Aug. 25, 2025

Published Online: Aug. 25, 2025

The Author Email:

DOI:10.1016/j.molp.2025.07.004

Topics