Chinese Journal of Lasers, Volume. 50, Issue 9, 0907107(2023)
Extending Field‑of‑View of Two‑Photon Microscopy Using Deep Learning
[1] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).
[2] König K. Multiphoton microscopy in life sciences[J]. Journal of Microscopy, 200, 83-104(2000).
[3] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).
[4] Bumstead J R, Park J J, Rosen I A et al. Designing a large field-of-view two-photon microscope using optical invariant analysis[J]. Neurophotonics, 5, 025001(2018).
[5] Ji N, Freeman J, Smith S L. Technologies for imaging neural activity in large volumes[J]. Nature Neuroscience, 19, 1154-1164(2016).
[6] Yang W J, Yuste R. In vivo imaging of neural activity[J]. Nature Methods, 14, 349-359(2017).
[7] Tsai P S, Mateo C, Field J J et al. Ultra-large field-of-view two-photon microscopy[J]. Optics Express, 23, 13833-13847(2015).
[8] Yu C H, Stirman J N, Yu Y Y et al. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry[J]. Nature Communications, 12, 1-8(2021).
[9] Clough M, Chen I A, Park S W et al. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds[J]. Nature Communications, 12, 1-7(2021).
[10] Demas J, Manley J, Tejera F et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy[J]. Nature Methods, 18, 1103-1111(2021).
[11] Sofroniew N J, Flickinger D, King J et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. eLife, 5, e14472(2016).
[12] Stirman J N, Smith I T, Kudenov M W et al. Wide field-of-view, multi-region two-photon imaging of neuronal activity in the mammalian brain[J]. Nature Biotechnology, 34, 857-62(2016).
[13] Yao J, Gao Y F, Yin Y X et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics[J]. Optics Letters, 47, 989-992(2022).
[14] Liu L X, Zhang M L, Wu Z Q et al. Application of adaptive optics in fluorescence microscope[J]. Laser & Optoelectronics Progress, 57, 120001(2020).
[15] Booth M J, Neil M A A, Juskaitis R et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 99, 5788-5792(2002).
[16] Park J H, Kong L J, Zhou Y F et al. Large-field-of-view imaging by multi-pupil adaptive optics[J]. Nature Methods, 14, 581-583(2017).
[17] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).
[18] Booth M J. Adaptive optical microscopy: the ongoing quest for a perfect image[J]. Light: Science & Applications, 3, e165(2014).
[19] Zhou H, Cai R Y, Quan T W et al. 3D high resolution generative deep-learning network for fluorescence microscopy imaging[J]. Optics Letters, 45, 1695-1698(2020).
[20] Zhang H, Fang C Y, Xie X L et al. High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network[J]. Biomedical Optics Express, 10, 1044-1063(2019).
[21] Weigert M, Schmidt U, Boothe T et al. Content-aware image restoration: pushing the limits of fluorescence microscopy[J]. Nature Methods, 15, 1090-1097(2018).
[22] Cheng S F, Zhou Y Y, Chen J B et al. High-resolution photoacoustic microscopy with deep penetration through learning[J]. Photoacoustics, 25, 100314(2022).
[23] Zhao H X, Ke Z W, Chen N B et al. A new deep learning method for image deblurring in optical microscopic systems[J]. Journal of Biophotonics, 13, e201960147(2020).
[24] Belthangady C, Royer L A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction[J]. Nature Methods, 16, 1215-1225(2019).
[25] Li H Y, Qu L Y, Hua Z J et al. Deep learning based fluorescence microscopy imaging technologies and applications[J]. Laser & Optoelectronics Progress, 58, 1811007(2021).
[26] Liu J H, Huang X S, Chen L Y et al. Deep learning–enhanced fluorescence microscopy via degeneration decoupling[J]. Optics Express, 28, 14859-14873(2020).
[27] Xiong Z H, Song L F, Liu X et al. Performance enhancement of fluorescence microscopy by using deep learning(invited)[J]. Infrared and Laser Engineering, 51, 89-106(2022).
[28] Shen B L, Liu S W, Li Y P et al. Deep learning autofluorescence-harmonic microscopy[J]. Light: Science & Applications, 11, 1-14(2022).
[29] Wang Z Q, Zhu L X, Zhang H et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning[J]. Nature Methods, 18, 551-556(2021).
[30] Wang W H, Zhao X, Jiang Z X et al. Deep learning-based scattering removal of light field imaging[J]. Chinese Optics Letters, 20, 041101(2022).
[31] Saba A, Gigli C, Ayoub A B et al. Physics-informed neural networks for diffraction tomography[J]. Advanced Photonics, 4, 066001(2022).
[32] Zheng Y, Chen J J, Wu C X et al. Adaptive optics for structured illumination microscopy based on deep learning[J]. Cytometry, 99, 622-631(2021).
[34] Hu L J, Hu S W, Gong W et al. Image enhancement for fluorescence microscopy based on deep learning with prior knowledge of aberration[J]. Optics Letters, 46, 2055-2058(2021).
[35] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015, 234-241(2015).
[36] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[40] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).
Get Citation
Copy Citation Text
Chijian Li, Jing Yao, Yufeng Gao, Puxiang Lai, Yuezhi He, Sumin Qi, Wei Zheng. Extending Field‑of‑View of Two‑Photon Microscopy Using Deep Learning[J]. Chinese Journal of Lasers, 2023, 50(9): 0907107
Category: Biomedical Optical Imaging
Received: Nov. 18, 2022
Accepted: Feb. 16, 2023
Published Online: Apr. 14, 2023
The Author Email: He Yuezhi (yz.he@siat.ac.cn), Qi Sumin (qixm@qfnu.edu.cn), Zheng Wei (zhengwei@siat.ac.cn)