Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610012(2023)

Underwater Target Detection Algorithm Based on Automatic Color Level and Bidirectional Feature Fusion

Ting Yang1, Wuqi Gao2, Peng Wang3、*, Xiaoyan Li4, Lü Zhigang4, and Ruohai Di4
Author Affiliations
  • 1School of Ordnance Science and Technology, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • 2School of Computer Science and Technology, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • 3Development Planning Office, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • 4School of Electronic Information Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • show less
    Figures & Tables(15)
    Basic structure of Faster R-CNN
    Overall network structure of the proposed algorithm
    Histograms of original image and enhanced image. (a) Original image; (b) enhanced image
    Structure of PAFPN
    Structure of bottom-up module
    Partial data samples
    Dataset analysis. (a) Aspect ratio of the real box; (b) size ratio of the real box in the original image
    Results of image enhancement obtained by different algorithms
    PR curves of different improved algorithms
    Loss function curve of the proposed network
    Comparison of detection results of proposed algorithm before and after improvement
    Comparison of detection effects for blurred image and clear image
    • Table 1. Evaluation of image enhancement results

      View table

      Table 1. Evaluation of image enhancement results

      ImageAlgorithmNIQEILNIQEUCIQE
      1Src7.160638.24950.3061
      MSR6.879939.66760.2722
      MSRCP3.741827.17900.4390
      Proposed algorithm6.383429.26170.2722
      2Src12.942842.73090.2785
      MSR6.879939.66760.3636
      MSRCP8.096246.23390.4708
      Proposed algorithm10.349932.55860.4609
      3Src10.416833.57920.3585
      MSR9.108246.01940.2029
      MSRCP7.004930.0980.4275
      Proposed algorithm8.803927.87060.4276
      4Src5.797531.20440.2955
      MSR5.690538.23970.2566
      MSRCP4.102634.49180.4275
      Proposed algorithm3.804127.39690.4668
    • Table 2. Comparison of defferent improved detection algorithms

      View table

      Table 2. Comparison of defferent improved detection algorithms

      AlgorithmInput imageBackboneFeature enhancementROIBboxLoss functionEpoch
      Faster R-CNNSrcVGG16NoneROI poolingNMS(T+V)L1LossNone
      BaselineSrcResNet50FPNROI alignNMS(T+V)L1Loss60
      Method 1SrcResNet50FPNROI alignNMS(T+V)IoULoss60
      Method 2SrcResNet50FPNROI alignNMS(T+V)FocalLoss60
      Method 3SrcResNet50FPNROI alignNMS(T+V)Gaussian FocalLoss60
      Our-1IEResNet50FPNROI alignNMS(T+V)FocalLoss60
      Our-2IEResNet50FPNROI alignSoft-NMS(V)FocalLoss60
      Our-3IEResNet50FPNROI alignSoft-NMS(T+V)FocalLoss60
      Our-4IEResNet50PAFPNROI alignSoft-NMS(T+V)FocalLoss60
    • Table 3. AP and AR of different improved detection algorithms

      View table

      Table 3. AP and AR of different improved detection algorithms

      MethodAP /%AP0.50 /%AP0.75 /%APS /%APM /%APL /%AR /%ARS /%ARM /%ARL /%
      Baseline54.288.859.527.148.260.162.140.657.267.0
      Method 154.988.761.127.449.060.862.940.358.067.8
      Method 256.090.262.328.550.061.963.441.158.368.3
      Method 355.590.061.728.949.461.563.040.758.068.1
      Our-156.790.763.129.050.562.664.041.458.869.1
      Our-257.990.866.130.651.763.670.549.465.574.8
      Our-359.190.867.932.452.765.170.349.465.075.0
      Our-459.791.268.633.353.167.570.549.765.175.3
    Tools

    Get Citation

    Copy Citation Text

    Ting Yang, Wuqi Gao, Peng Wang, Xiaoyan Li, Lü Zhigang, Ruohai Di. Underwater Target Detection Algorithm Based on Automatic Color Level and Bidirectional Feature Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 2, 2021

    Accepted: Jan. 21, 2022

    Published Online: Mar. 16, 2023

    The Author Email: Peng Wang (wp_xatu@163.com)

    DOI:10.3788/LOP213139

    Topics