Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1902(2025)
Mechanism of Organic-Inorganic Composite Artificial Interface Layer for Lithium Metal Anode
[1] [1] CHEN X, LIU X Y, SHEN X, et al. Applying machine learning to rechargeable batteries: From the microscale to the macroscale[J]. Angew Chem Int Ed, 2021, 60(46): 24354–24366.
[2] [2] FENG Y, ZHOU L M, MA H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries[J]. Energy Environ Sci, 2022, 15(5): 1711–1759.
[3] [3] ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chem Soc Rev, 2020, 49(10): 3040–3071.
[4] [4] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat Energy, 2018, 3: 16–21.
[5] [5] HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat Energy, 2019, 4: 187–196.
[6] [6] LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194–206.
[7] [7] KIM M S, ZHANG Z W, RUDNICKI P E, et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nat Mater, 2022, 21(4): 445–454.
[8] [8] LI F, HE J, LIU J D, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angew Chem Int Ed, 2021, 60(12): 6600–6608.
[9] [9] XU R, SHEN X, MA X X, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface[J]. Angew Chem Int Ed, 2021, 60(8): 4215–4220.
[10] [10] ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nat Energy, 2017, 2(3): 17012.
[11] [11] FAN L, ZHUANG H L, ZHANG W D, et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode[J]. Adv Energy Mater, 2018, 8(15): 1703360.
[12] [12] LIU L, YIN Y X, LI J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Adv Mater, 2018, 30(10): 1706216.
[13] [13] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6: 8058.
[14] [14] YAN K, LU Z D, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nat Energy, 2016, 1(3): 16010.
[15] [15] ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angew Chem Int Ed, 2017, 56(27): 7764–7768.
[16] [16] KANG T, WANG Y L, GUO F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Cent Sci, 2019, 5(3): 468–476.
[17] [17] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Adv Sci, 2017, 4(3): 1600445.
[18] [18] YI R W, MAO Y Y, SHEN Y B, et al. Self-assembled monolayers for batteries[J]. J Am Chem Soc, 2021, 143(33): 12897–12912.
[19] [19] LIU Y J, TAO X Y, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science, 2022, 375(6582): 739–745.
[20] [20] CAI X, XU H, MA C, et al. Identifying the role of interfacial long-range order in regulating the solid electrolyte interphase in lithium metal batteries[J]. Nano Lett, 2025, 25(4): 1266–1271.
[21] [21] MA C, QIAO Q Q, YUE K, et al. Ordering sulfonic groups facilitate a Li3N-enriched interphaseviadirecting the decomposition of LiNO3[J]. Adv Funct Mater, 2024, 34(41): 2406479.
[22] [22] MIN B, PYO S, HAN J, et al. Anion-rich interfaceviaa self-assembled monolayer toward a long-lifespan Li metal battery[J]. ACS Appl Mater Interfaces, 2025, 17(3): 4795–4803.
[23] [23] ZHENG L, GUO F, KANG T, et al. Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate[J]. Nano Res, 2020, 13(5): 1324–1331.
[24] [24] CAO W Z, LI Q, YU X Q, et al. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47–78.
[25] [25] LIU H D, ZHU Z Y, YAN Q Z, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63–67.
[26] [26] CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nat Energy, 2020, 5: 386–397.
[27] [27] CHEN M, ZHENG J H, LIU Y J, et al. Marrying ester group with lithium salt: Cellulose-acetate-enabled LiF-enriched interface for stable lithium metal anodes[J]. Adv Funct Mater, 2021, 31(36): 2102228.
[28] [28] FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Sci Adv, 2018, 4(12): eaau9245.
[29] [29] LIU Y Y, XU X Y, KAPITANOVA O O, et al. Electro-chemo- mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes[J]. Adv Energy Mater, 2022, 12(9): 2103589.
[30] [30] ZOU P C, SUI Y M, ZHAN H C, et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields[J]. Chem Rev, 2021, 121(10): 5986–6056.
[31] [31] ZHANG Q, DONG J L, ZHOU C, et al. Machine learning for data-driven design of high-safety lithium metal anode[J]. STAR Protoc, 2024, 5(1): 102834.
[32] [32] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.
[33] [33] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.
[34] [34] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758–1775.
[35] [35] PERDEW J P, YUE W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys Rev B Condens Matter, 1986, 33(12): 8800–8802.
[36] [36] LIU Z, QI Y, LIN Y X, et al. Interfacial study on solid electrolyte interphase at Li metal anode: Implication for Li dendrite growth[J]. J Electrochem Soc, 2016, 163(3): A592–A598.
[37] [37] RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries[J]. J Phys Chem C, 2019, 123(16): 10237–10245.
[38] [38] SWASTIK B, HWANG GYEONG S. First-principles prediction of anomalously strong phase dependence of transport and mechanical properties of lithium fluoride[J]. Acta Mater, 2022, 235: 118077.
[39] [39] BENITEZ L, SEMINARIO J M. Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries[J]. J Electrochem Soc, 2017, 164(11): E3159–E3170.
[40] [40] ZHANG B K, LIN Z, CHEN H B, et al. The stability and reaction mechanism of a LiF/electrolyte interface: Insight from density functional theory[J]. J Mater Chem A, 2020, 8(5): 2613–2617.
Get Citation
Copy Citation Text
GAO Wenxia, FANG Shihao, MAO Xin, LIU Chang, YU Xuefeng, PENG Chao. Mechanism of Organic-Inorganic Composite Artificial Interface Layer for Lithium Metal Anode[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1902
Special Issue:
Received: Jan. 10, 2025
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: