Chinese Journal of Lasers, Volume. 52, Issue 12, 1202201(2025)

Enhancing Ultra-High Cycle Fatigue Properties of GH4169 Alloy Using Microscale Laser Shock Peening

Daihua Li1, Weifeng He1,2、*, Xiangfan Nie1,2, Yuhang Wu1, and Jile Pan2
Author Affiliations
  • 1National Key Lab of Aerospace Power System and Plasma Technology, School of Aviation Engineering, Air Force Engineering University, Xi’an 710038, Shaanxi , China
  • 2National Key Lab of Aerospace Power System and Plasma Technology, Xi’an Jiaotong University, Xi’an 710038, Shaanxi , China
  • show less
    Figures & Tables(17)
    Metallographic structure of GH4169 with EDS analysis results of phase indicated by arrow shown in inset
    Schematic diagram of ultra-high cycle fatigue specimen (unit: mm)
    Microscale laser shock peening treatment. (a) Microscale laser shock peening diagram; (b) microscale laser shock peening area and scanning path of microscale laser shock peening
    S-N curves of different samples
    Ultra-high cycle fatigue fracture of untreated specimen (σa=425 MPa, Nf=1.56×107). (a) General view of fatigue fracture; (b) crack growth region and crack initiation region; (c) enlarged view of crack initiation region
    Ultra-high cycle fatigue fracture of 62 mJ&1 time specimen (σa=425 MPa, Nf=1.21×108). (a) General view of fatigue fracture; (b) general view of crack initiation region; (c) edge of crack initiation region; (d) enlarged view of crack initiation region
    Ultra-high cycle fatigue fracture of 62 mJ&3 times specimen (σa=425 MPa, Nf=7.88×108). (a) General view of fatigue fracture;(b) general view of crack initiation region; (c) facet morphology;(d) edge of crack initiation region with carbon element distribution in inclusion shown in inset
    Ultra-high cycle fatigue fracture of 82 mJ&1 time specimen (σa=425 MPa, Nf=4.32×108). (a) General view of fatigue fracture; (b) crack initiation region; (c) facet morphology
    Three-dimensional morphologies of specimens. (a) Untreated; (b) 62 mJ&1 time; (c) 62 mJ&3 times; (d) 82 mJ&1 time
    Surface roughness values of specimens
    Residual stress distributions of treated specimens in gradient direction
    Inverse pole figures and KAM diagrams of surfaces along gradient direction. (a)(b) Untreated; (c)(d) 62 mJ&1 time; (e)(f) 62 mJ&3 times; (g)(h) 82 mJ&1 time
    Grain size distributions of surface layer after microscale laser shock peening
    • Table 1. Chemical compositions of GH4169 (mass fraction, %)

      View table

      Table 1. Chemical compositions of GH4169 (mass fraction, %)

      FeNiMoNbTiAlSiPMnSCrC
      Bal.53.84002.99005.44000.99000.55000.05800.01100.06200.000518.24000.0250
    • Table 2. Mechanical properties of GH4169

      View table

      Table 2. Mechanical properties of GH4169

      ParameterTensile strength /MPaYield strength /MPaElongation /%Shrinkage /%Elastic modulus /GPa
      Value146912111731191
    • Table 3. Process parameters of microscale laser shock peening

      View table

      Table 3. Process parameters of microscale laser shock peening

      ParameterContent
      Constrained layerWater
      Spot diameter /mm0.36
      Power density /(GW/cm26
      Impact energy /mJ62, 82
      Overlap rate /%50%
      Impact number1,3
    • Table 4. GND density distributions of surface layers after microscale laser shock peening under different parameters and average GND densities

      View table

      Table 4. GND density distributions of surface layers after microscale laser shock peening under different parameters and average GND densities

      GND densityFrequency /%
      Untreated specimen62 mJ&1 time specimen62 mJ&3 times specimen82 mJ&1 time specimen
      Average GND density0.75×1014/m20.78×1014/m20.90×1014/m20.85×1014/m2
      0×1014/m2ρGND≤2×1014/m295.9111598.0217398.0405898.03120
      2×1014/m2<ρGND≤4×1014/m23.332211.672761.736691.70007
      4×1014/m2<ρGND≤6×1014/m20.558480.255720.168890.22700
      6×1014/m2<ρGND≤8×1014/m20.143480.040800.035250.03179
      8×1014/m2<ρGND≤10×1014/m20.039570.005140.015060.00674
      10×1014/m2<ρGND≤12×1014/m20.011260.002250.002560.00225
      12×1014/m2<ρGND≤14×1014/m20.003860.001610.000960.00096
    Tools

    Get Citation

    Copy Citation Text

    Daihua Li, Weifeng He, Xiangfan Nie, Yuhang Wu, Jile Pan. Enhancing Ultra-High Cycle Fatigue Properties of GH4169 Alloy Using Microscale Laser Shock Peening[J]. Chinese Journal of Lasers, 2025, 52(12): 1202201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Feb. 10, 2025

    Accepted: Mar. 10, 2025

    Published Online: May. 22, 2025

    The Author Email: Weifeng He (hehe_coco@163.com)

    DOI:10.3788/CJL250513

    CSTR:32183.14.CJL250513

    Topics