Laser & Optoelectronics Progress, Volume. 61, Issue 16, 1611014(2024)

Infrared Small Target Detection via Multi⁃Layer Convolution Fusion(Invited)

Peng Zhang1, Lifen Shi2, Ziyang Chen1、*, and Jixiong Pu1
Author Affiliations
  • 1Fujian Key Laboratory of Light Propagation and Transformation,College of Information Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
  • 2Officers College of PAP, Chengdu 610000, Sichuan, China
  • show less
    Figures & Tables(13)
    Overall architecture of the model
    Multi-layer convolutional fusion module
    Node process
    Multi-receptive field fusion module diagram
    Infrared images and corresponding 3D images. (a) Original infrared image of two targets; (b) 3D image of infrared image of two targets; (c) original infrared image of three targets; (d) 3D image of infrared image of three targets
    Grayscale distribution of detection results using different algorithms
    Comparison of test original images, label images, and algorithm detection images
    Ablation experiments of multi-layer convolutional fusion module. (a) Structure diagram with one less set of vertical node; (b) structure diagram with one more set of vertical node
    • Table 1. Algorithm parameters

      View table

      Table 1. Algorithm parameters

      AlgorithmParameter
      Top-HatFilter size:5×5
      RLCMScale quantity:3,k1=[259],k2=[4916
      CDDTarget box scale:3×3-9×9,background Box scale:19×19
      PSTNNBlock size:40×40,sliding step:40
    • Table 2. Average indicators of different methods

      View table

      Table 2. Average indicators of different methods

      MethodFalseRecallPrecisionF1IOUsampleIOUpixel
      Top-Hat0.000600.41460.10950.14970.082020.04236
      RLCM0.000400.17710.02350.04140.023140.01369
      CDD0.000020.08120.88230.14930.081580.07327
      FKRW0.000070.16860.34800.21430.156390.10364
      PSTNN0.000090.85810.56920.67480.320210.28156
      IAANet0.000010.17360.91340.28510.185090.15971
      ALCNet0.000040.81170.78110.79520.655760.55878
      ACM0.000040.75020.79740.69500.577660.53588
      Ours0.000010.94090.93830.93850.847570.81431
    • Table 3. Ablation experiments of multi-layer convolutional fusion module

      View table

      Table 3. Ablation experiments of multi-layer convolutional fusion module

      AlgorithmIOUsampleIOUpixel
      Multi-layer convolutional fusion module minus a set of vertical node structure diagrams0.613560.56931
      Add a set of vertical nodes to the multi-layer convolutional fusion module0.645620.60136
      Ours0.847570.81431
    • Table 4. Ablation experiments of different receptive fields

      View table

      Table 4. Ablation experiments of different receptive fields

      AlgorithmIOUsampleIOUpixel
      The combination of receptive fields with convolution kernel sizes of 1,3,and 50.809610.75496
      The combination of receptive fields with convolution kernel sizes of 5,7,and 90.651370.59427
      Ours(receptive fields with convolution kernel sizes of 3,5,and 7)0.847570.81431
    • Table 5. Ablation experiments

      View table

      Table 5. Ablation experiments

      AlgorithmIOUsampleIOUpixel
      No multi-receptive field fusion module0.701360.66370
      No multi-layer convolutional fusion module0.356410.30371
      No CBAM0.752530.72584
      Ours0.847570.81431
    Tools

    Get Citation

    Copy Citation Text

    Peng Zhang, Lifen Shi, Ziyang Chen, Jixiong Pu. Infrared Small Target Detection via Multi⁃Layer Convolution Fusion(Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 13, 2024

    Accepted: Jul. 2, 2024

    Published Online: Aug. 12, 2024

    The Author Email: Chen Ziyang (ziyang@hqu.edu.cn)

    DOI:10.3788/LOP241267

    CSTR:32186.14.LOP241267

    Topics