Chinese Journal of Lasers, Volume. 52, Issue 11, 1101003(2025)

Inverse-Saturation-Response High-Performance Femtosecond-Laser Hyperdoped Silicon Photodetector

Guanting Song1,2, Xu Zhou1,2、*, Ziyang Zheng1,2, Jiaxin Cao1,2, Qiang Wu1,2、**, and Jingjun Xu1,2
Author Affiliations
  • 1Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics & TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • 2Shenzhen Research Institute, Nankai University, Shenzhen 518083, Guangdong , China
  • show less
    References(42)

    [10] Tian H J, Hu A Q, Liu Q L et al. Interface-induced high responsivity in hybrid graphene/GaAs photodetector[J]. Advanced Optical Materials, 8, 1901741(2020).

    [14] Jia Z X, Wu Q, Jin X R et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 28, 5239-5247(2020).

    [15] Carey J E, Crouch C H, Shen M Y et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 30, 1773-1775(2005).

    [19] Lin Y T, Mangan N, Marbach S et al. Creating femtosecond-laser-hyperdoped silicon with a homogeneous doping profile[J]. Applied Physics Letters, 106, 062105(2015).

    [21] Zhou X, Chen L, Wu Q et al. Highly uniform fabrication of femtosecond-laser-modified silicon materials enabled by temporal pulse shaping[J]. Applied Physics Letters, 124, 101601(2024).

    [24] Jin X R, Wu Q, Huang S et al. High-performance black silicon photodetectors operating over a wide temperature range[J]. Optical Materials, 113, 110874(2021).

    [26] Zhao J H, Li C H, Li X B et al. NIR photodetector based on nanosecond laser-modified silicon[J]. IEEE Transactions on Electron Devices, 65, 4905-4909(2018).

    [29] Debernardi A. First principles simulations of microscopic mechanisms responsible for the drastic reduction of electrical deactivation defects in Se hyperdoped silicon[J]. Physical Chemistry Chemical Physics, 23, 24699-24710(2021).

    [33] Sher M J, Hemme E G. Hyperdoped silicon materials: from basic materials properties to sub-bandgap infrared photodetectors[J]. Semiconductor Science Technology, 38, 033001(2023).

    [36] Tietze M L, Burtone L, Riede M et al. Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: a photoelectron spectroscopy and theoretical study[J]. Physical Review B, 86, 035320(2012).

    [37] Garrido J A, Monroy E, Izpura I et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science Technology, 13, 563-568(1998).

    [40] Ramaswamy A, Piels M, Nunoya N et al. High power silicon-germanium photodiodes for microwave photonic applications[J]. IEEE Transactions on Microwave Theory and Techniques, 58, 3336-3343(2010).

    [41] Wang Z Y, Xie X J, Wei C et al. High-speed, high-power balanced photodiodes based on flip-chip bonding[J]. Acta Optica Sinica, 44, 1304001(2024).

    [42] Liu Z P, Liu Z, Cheng B W. Research advances of high speed photodetectors (invited)[J]. Acta Optica Sinica, 44, 1513008(2024).

    Tools

    Get Citation

    Copy Citation Text

    Guanting Song, Xu Zhou, Ziyang Zheng, Jiaxin Cao, Qiang Wu, Jingjun Xu. Inverse-Saturation-Response High-Performance Femtosecond-Laser Hyperdoped Silicon Photodetector[J]. Chinese Journal of Lasers, 2025, 52(11): 1101003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jan. 24, 2025

    Accepted: Mar. 6, 2025

    Published Online: Jun. 6, 2025

    The Author Email: Xu Zhou (zhouxu@nankai.edu.cn), Qiang Wu (wuqiang@nankai.edu.cn)

    DOI:10.3788/CJL250504

    Topics