Laser & Optoelectronics Progress, Volume. 57, Issue 10, 101009(2020)

Object Detection Algorithm Based on Improved Faster R-CNN

Bing Zhou, Runxin Li*, Zhenhong Shang, and Xiaowu Li
Author Affiliations
  • Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • show less
    Figures & Tables(13)
    Structure of Faster R-CNN algorithm
    Region proposal network
    Problem with ROI pooling
    Problem with non-maximum suppression algorithm
    Detection results with normal conditions. (a) Faster R-CNN; (b) add Soft-NMS+crop_and_resize; (c) add data enhancement; (d) our algorithm
    Detection results with grayscale image. (a) Faster R-CNN; (b) add Soft-NMS+crop_and_resize; (c) add data enhancement; (d) our algorithm
    Detection results with multiple targets overlapping. (a) Faster R-CNN; (b) add Soft-NMS+crop_and_resize; (c) add data enhancement; (d) our algorithm
    • Table 1. Test results on the PASCAL VOC2007

      View table

      Table 1. Test results on the PASCAL VOC2007

      AlgorithmBackboneTraining setTesting setmAP /%
      Fast R-CNNVGG-16VOC2007VOC200766.90
      Faster R-CNNVGG-16VOC2007VOC200769.90
      SSD300VGG-16VOC2007VOC200768.00
      YOLOGoogleNetVOC2007VOC200763.40
      Data enhancementVGG-16VOC2007VOC200770.90
      Soft-NMS+crop_and_resizeVGG-16VOC07++VOC200773.10
      OursVGG-16VOC07++VOC200776.40
    • Table 2. Detection results on PASCAL VOC07 ++ data set at different scales

      View table

      Table 2. Detection results on PASCAL VOC07 ++ data set at different scales

      Enter sizeBackboneTraining setTesting setmAP /%
      1282,2562,5212VGG-16VOC07++VOC200776.40
      642,1282,2562,5212VGG-16VOC07++VOC200777.69
      322,642,1282,2562,5212VGG-16VOC07++VOC200777.63
    • Table 3. Test results on PASCAL VOC07+12 test set

      View table

      Table 3. Test results on PASCAL VOC07+12 test set

      AlgorithmBackboneTraining setTesting setmAP /%
      Fast R-CNNVGG-16VOC07+12VOC200770.00
      Faster R-CNNVGG-16VOC07+12VOC200773.20
      Faster R-CNNResNet-101VOC07+12VOC200776.40
      MR-CNNResNet-101VOC07+12VOC200778.20
      IONVGG-16VOC07+12VOC200776.50
      YOLOGoogleNetVOC07+12VOC200763.40
      YOLOV2Darknet-19VOC07+12VOC200778.60
      SSD300VGG-16VOC07+12VOC200777.20
      Data enhancementVGG-16VOC07+12VOC200775.80
      Soft-NMS+crop_and_resizeVGG-16VOC07+++12VOC200778.40
      OursVGG-16VOC07+++12VOC200781.20
    • Table 4. Detection results on PASCAL VOC07+++12 at different scales

      View table

      Table 4. Detection results on PASCAL VOC07+++12 at different scales

      Enter sizeBackboneTraining setTesting setmAP /%
      1282,2562,5212VGG-16VOC07+++12VOC200781.22
      642,1282,2562,5212VGG-16VOC07+++12VOC200783.00
      322,642,1282,2562,5212VGG-16VOC07+++12VOC200782.94
    • Table 5. mAP of different algorithms on COCO2014unit:%

      View table

      Table 5. mAP of different algorithms on COCO2014unit:%

      AlgorithmTraining setIOUImage size
      0.50∶0.950.500.75SML
      Fast R-CNNtrain19.7035.90----
      Faster R-CNNtrain20.5039.9019.404.1020.0035.80
      Faster R-CNNtrain21.9042.70----
      ION[18]train23.6043.2023.606.4024.1038.30
      Faster R-CNNtrainval3524.2045.3023.507.7026.4037.10
      SSD300trainval3523.2041.2023.405.3023.2039.60
      SSD512trainval3526.8046.5027.809.0028.9041.90
      YOLOV2[19]trainval3521.6044.0019.205.0022.4035.50
      Ourstrainval3526.6047.2027.0011.4030.8037.10
    • Table 6. mAR of different algorithms on COCO2014unit:%

      View table

      Table 6. mAR of different algorithms on COCO2014unit:%

      AlgorithmTraining setNumber of iterationsImage size
      110100SML
      Faster R-CNNtrain21.3029.5030.107.3032.1052.00
      IONtrain23.2032.7033.5010.1037.7053.60
      Faster R-CNNtrainval3523.8034.0034.6012.0038.5054.40
      SSD300trainval3522.5033.2035.309.6037.6056.50
      SSD512trainval3524.8037.5039.8014.0043.5059.00
      YOLOV2trainval3520.7031.6033.309.8036.5054.40
      Ourstrainval3525.5038.3039.3019.7045.5055.40
    Tools

    Get Citation

    Copy Citation Text

    Bing Zhou, Runxin Li, Zhenhong Shang, Xiaowu Li. Object Detection Algorithm Based on Improved Faster R-CNN[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 28, 2019

    Accepted: Oct. 18, 2019

    Published Online: May. 8, 2020

    The Author Email: Runxin Li (rxli@kmust.edu.cn)

    DOI:10.3788/LOP57.101009

    Topics