Journal of Synthetic Crystals, Volume. 51, Issue 6, 1051(2022)

Simulation of Lead-Based Halide Perovskite Solar Cells

XIAO Jianmin1、*, YUAN Jiren1,2, WANG Peng1, DENG Xinhua1, HUANG Haibin2,3, and ZHOU Lang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(25)

    [1] [1] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3 NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628.

    [2] [2] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344.

    [3] [3] ZHAO Y X, NARDES A M, ZHU K. Solid-state mesostructured perovskite CH3 NH3PbI3 solar cells: charge transport, recombination, and diffusion length[J]. The Journal of Physical Chemistry Letters, 2014, 5(3): 490-494.

    [4] [4] WANG M Y, SUN L, LIN Z Q, et al. p-n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. Energy & Environmental Science, 2013, 6(4): 1211.

    [5] [5] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

    [6] [6] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591.

    [7] [7] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.

    [8] [8] SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 2014, 53(42): 11232-11235.

    [9] [9] JAYAN K D, SEBASTIAN V, KURIAN J. Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells[J]. Solar Energy, 2021, 221: 99-108.

    [10] [10] IM J H, JANG I H, PELLET N, et al. Growth of CH3 NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014, 9(11): 927-932.

    [11] [11] MADAN J, SHIVANI, PANDEY R, et al. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell[J]. Solar Energy, 2020, 197: 212-221.

    [13] [13] CHEN H N, XIANG S S, LI W P, et al. Inorganic perovskite solar cells: a rapidly growing field[J]. Solar RRL, 2018, 2(2): 1700188.

    [20] [20] LAKHDAR N, HIMA A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3[J]. Optical Materials, 2020, 99: 109517.

    [21] [21] LIN L Y, JIANG L Q, LI P, et al. A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing[J]. Journal of Physics and Chemistry of Solids, 2019, 124: 205-211.

    [23] [23] CHAKRABORTY K, CHOUDHURY M G, PAUL S. Numerical study of Cs2TiX6 (X=Br-, I-, F- and Cl-) based perovskite solar cell using SCAPS-1D device simulation[J]. Solar Energy, 2019, 194: 886-892.

    [24] [24] ZHU J Z, QI L H, DU H J, et al. Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells[J]. Chinese Physics B, 2015, 24(10): 108501.

    [26] [26] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361/362: 527-532.

    [27] [27] ALAM I, MOLLICK R, ASHRAF M A. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers[J]. Physica B: Condensed Matter, 2021, 618: 413187.

    [28] [28] DU H J, WANG W C, GU Y F. Simulation design of p-i-n-type all-perovskite solar cells with high efficiency[J]. Chinese Physics B, 2017, 26(2): 028803.

    [29] [29] AZRI F, MEFTAH A, SENGOUGA N, et al. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell[J]. Solar Energy, 2019, 181: 372-378.

    [32] [32] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982.

    [33] [33] HAO F, STOUMPOS C C, CHANG R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136(22): 8094-8099.

    [34] [34] MANCINI A, QUADRELLI P, AMOROSO G, et al. Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium, trimethylammonium; X=I, Br, Cl) hybrid organic-inorganic materials[J]. Journal of Solid State Chemistry, 2016, 240: 55-60.

    [35] [35] WANG G T, WANG D Y, SHI X B. Electronic structure and optical properties of Cs2AX′2X4(A=Ge, Sn, Pb; X′, X=Cl, Br, I)[J]. AIP Advances, 2015, 5(12): 127224.

    CLP Journals

    [1] TONG Lei, GUO Jiarong, LI Qing, MIAO Jiayi, LI Chunran, ZHONG Min. Numerical Simulation of CuSbS2 Thin Film Solar Cells[J]. Journal of Synthetic Crystals, 2023, 52(10): 1773

    Tools

    Get Citation

    Copy Citation Text

    XIAO Jianmin, YUAN Jiren, WANG Peng, DENG Xinhua, HUANG Haibin, ZHOU Lang. Simulation of Lead-Based Halide Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2022, 51(6): 1051

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2022

    Accepted: --

    Published Online: Aug. 13, 2022

    The Author Email: Jianmin XIAO (xiaojianmin1026@163.com)

    DOI:

    CSTR:32186.14.

    Topics