Semiconductor Optoelectronics, Volume. 46, Issue 4, 575(2025)

Review of Key Technologies in Quantum Sensing Research

ZHANG Xianyu1, REN Qingying1,2, CHEN Chang1, GU Yanli1, FU Lili1, HAO Xueyuan1, and LI Wei2,3
Author Affiliations
  • 1College of Electronic and Optical Engineering, College of Flexible Electronics, Nanjing 210023, CHN
  • 2Nantong Research Institute, Nantong 226001, CHN
  • 3School of Integrated Circuit Science and Engineering (School of Industry-Education Integration), Nanjing University of Posts and Telecommunications, Nanjing 210023, CHN
  • show less
    References(54)

    [1] [1] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002.

    [2] [2] NSTC. Bringing quantum sensors to fruition[DB/OL], 2022 [2025-04].

    [5] [5] Bell W E, Bloom A L. Optical detection of magnetic resonance in alkali metal vapor[J]. Physical Review, 1957, 107(6): 1559-1565.

    [6] [6] Essen L, Parry J V L. An atomic standard of frequency and time interval: a Csium resonator[J]. Nature, 1955, 176(4476): 280-282.

    [7] [7] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

    [8] [8] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

    [9] [9] Saffman M, Walker T G, Mlmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.

    [10] [10] Li X, Han B, Liu Z, et al. Femtotesla all-optical dual-axis spin-exchange relaxation-free magnetometer[J]. Applied Physics Letters, 2024, 124(25): 254102.

    [11] [11] Holloway C L, Prajapati N, Sherman J A, et al. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 2022, 4(3): 034401.

    [12] [12] Holloway C L, Simons M T, Kautz M D, et al. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 2018, 113(9): 094101.

    [13] [13] Perez M A, Nguyen U, Knappe S, et al. Rubidium vapor cellwith integrated nonmetallic multilayer reflectors[C]//2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008: 790-793.

    [14] [14] Eklund E J, Shkel A M, Knappe S, et al. Glass-blown spherical microcells for chip-scale atomic devices[J]. Sensors and Actuators A: Physical, 2008, 143(1): 175-180.

    [15] [15] Knappe S, Schwindt P, Shah V, et al. A chip-scale atomic clock based on 87Rb with improved frequency stability[J]. Optics Express, 2005, 13(4): 1249-1253.

    [16] [16] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.

    [17] [17] Lett P D, Watts R N, Westbrook C I, et al. Observation of atoms laser cooled below the Doppler limit[J]. Physical Review Letters, 1988, 61(2): 169-172.

    [18] [18] Keith D W, Ekstrom C R, Turchette Q A, et al. An interferometer for atoms[J]. Physical Review Letters, 1991, 66(21): 2693-2696.

    [19] [19] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10–18 Instability[J]. Science, 2013, 341(6151): 1215-1218.

    [20] [20] Yang Y A, Luo W T, Zhang J L, et al. Minute-scale Schrdinger-cat state of spin-5/2 atoms[J]. Nature Photonics, 2025, 19(1): 89-94.

    [22] [22] Baumgart I, Cai J M, Retzker A, et al. Ultrasensitive magnetometer using a single atom[J]. Physical Review Letters, 2016, 116(24): 240801.

    [23] [23] Campbell W C, Hamilton P, Jansen P, et al. Rotation sensing with trapped ions: A Sagnac interferometer in a spin-space domain[J]. Physical Review A, 2017, 96(4): 042109.

    [24] [24] Gilmore K A, Affolter M, Lewis-Swan R J, et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals[J]. Science, 2021, 373(6555): 673-678.

    [25] [25] Liu Y, Lu P, Rao X, et al. A single-atom mechano-optical transducer for sensing sub-attonewton vector DC force[J]. Applied Physics Letters, 2022, 121(25): 254002.

    [26] [26] Wei Y F, Chao S J, Cui K F, et al. Improved measurement of the differential polarizability using co-trapped ions[J]. Physical Review Letters, 2024, 133(3): 033001.

    [27] [27] Rui Y, Zhang L, Li R, et al. Subrecoil cooling of 6Li atoms by 2S→3P ultraviolet narrow transition[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(8): 280313.

    [28] [28] Zaitsev A M. Optical Properties of Diamond: A Data Handbook[M]. Berlin: Springer, 2001.

    [29] [29] Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.

    [30] [30] Jensen K, Leefer N, Jarmola A, et al. Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond[J]. Physical Review Letters, 2014, 112(16): 160802.

    [31] [31] Fescenko I, Jarmola A, Savukov I, et al. Diamond magnetometer enhanced by ferrite flux concentrators[J]. Physical Review Research, 2020, 2(2): 023394.

    [32] [32] Liu G Q, Liu R B, Li Q. Nanothermometry with enhanced sensitivity and enlarged working range using diamond sensors[J]. Accounts of Chemical Research, 2023, 56(2): 95-105.

    [33] [33] Trofimov S, Lips K, Naydenov B. Voltage detected single spin dynamics in diamond at ambient conditions[J]. Nature Communications, 2025, 16(1): 3518.

    [34] [34] Jarmola A, Lourette S, Acosta V M, et al. Demonstration of diamond nuclear spin gyroscope[J]. Science Advances, 2021, 7(43): eabl3840.

    [35] [35] Nguyen C T, Evans R E, Sipahigil A, et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond[J]. Applied Physics Letters, 2018, 112(20): 203102.

    [36] [36] Han Y, Pederson C, Matthews B E, et al. Creation of color centers in diamond by recoil implantation through dielectric films[J]. Applied Physics Letters, 2024, 124(4): 044007.

    [37] [37] Guo X, Yang B, Zhang X, et al. Diamond photo-electric detectors with introduced silicon-vacancy color centers[J]. Journal of Materials Chemistry C, 2024, 12(38): 15483-15490.

    [39] [39] Wang J F, Liu L, Liu X D, et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide[J]. Nature Materials, 2023, 22(4): 489-494.

    [40] [40] Hu H, Zhou Y, Yi A, et al. Room-temperature waveguide integrated quantum register in a semiconductor photonic platform[J]. Nature Communications, 2024, 15: 10256.

    [41] [41] Shen Y, Zheng W, Zhu K, et al. Variability and yield in h-BN-based memristive circuits: the role of each type of defect[J]. Advanced Materials, 2021, 33(41): 2103656.

    [42] [42] Gottscholl A, Kianinia M, Soltamov V, et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature[J]. Nature Materials, 2020, 19(5): 540-545.

    [43] [43] Scholten S C, Singh P, Healey A J, et al. Multi-species optically addressable spin defects in a van der Waals material[J]. Nature Communications, 2024, 15(1): 6727.

    [44] [44] Hald J, Srensen J L, Schori C, et al. Spin squeezed atoms: a macroscopic entangled ensemble created by light[J]. Physical Review Letters, 1999, 83(7): 1319-1322.

    [45] [45] Wineland D J, Bollinger J J, Itano W M, et al. Spin squeezing and reduced quantum noise in spectroscopy[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 46(11): R6797-R6800.

    [46] [46] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708.

    [47] [47] Slusher R E, Hollberg L W, Yurke B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Physical Review Letters, 1985, 55(22): 2409-2412.

    [48] [48] Aasi J, Abadie J, Abbott B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619.

    [49] [49] Gao L, Zheng L A, Lu B, et al. Generation of squeezed vacuum state in the millihertz frequency band[J]. Light, Science & Applications, 2024, 13(1): 294.

    [50] [50] Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.

    [51] [51] Becker P, Pohl H J, Riemann H, et al. Enrichment of silicon for a better kilogram[J]. Physica Status Solidi, 2010, 207(1): 49-66.

    [52] [52] Acharya R, Coke M, Adshead M, et al. Highly 28Si enriched silicon by localised focused ion beam implantation[J]. Communications Materials, 2024, 5: 57.

    [53] [53] Dwyer K J, Pomeroy J M, Simons D S, et al. Enriching28Si beyond 99.9998% for semiconductor quantum computing[J]. Journal of Physics D: Applied Physics, 2014, 47(34): 345105.

    [54] [54] Becher C, Gao W, Kar S, et al. 2023 roadmap for materials for quantum technologies[J]. Materials for Quantum Technology, 2023, 3(1): 012501.

    [55] [55] Lenzini F, Janousek J, Thearle O, et al. Integrated photonic platform for quantum information with continuous variables[J]. Science Advances, 2018, 4(12): eaat9331.

    [56] [56] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377.

    [57] [57] Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978.

    [58] [58] Boes A, Chang L, Langrock C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xianyu, REN Qingying, CHEN Chang, GU Yanli, FU Lili, HAO Xueyuan, LI Wei. Review of Key Technologies in Quantum Sensing Research[J]. Semiconductor Optoelectronics, 2025, 46(4): 575

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 28, 2025

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20250429004

    Topics