Semiconductor Optoelectronics, Volume. 46, Issue 4, 575(2025)
Review of Key Technologies in Quantum Sensing Research
[1] [1] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002.
[2] [2] NSTC. Bringing quantum sensors to fruition[DB/OL], 2022 [2025-04].
[5] [5] Bell W E, Bloom A L. Optical detection of magnetic resonance in alkali metal vapor[J]. Physical Review, 1957, 107(6): 1559-1565.
[6] [6] Essen L, Parry J V L. An atomic standard of frequency and time interval: a Csium resonator[J]. Nature, 1955, 176(4476): 280-282.
[7] [7] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
[8] [8] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.
[9] [9] Saffman M, Walker T G, Mlmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.
[10] [10] Li X, Han B, Liu Z, et al. Femtotesla all-optical dual-axis spin-exchange relaxation-free magnetometer[J]. Applied Physics Letters, 2024, 124(25): 254102.
[11] [11] Holloway C L, Prajapati N, Sherman J A, et al. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 2022, 4(3): 034401.
[12] [12] Holloway C L, Simons M T, Kautz M D, et al. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 2018, 113(9): 094101.
[13] [13] Perez M A, Nguyen U, Knappe S, et al. Rubidium vapor cellwith integrated nonmetallic multilayer reflectors[C]//2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008: 790-793.
[14] [14] Eklund E J, Shkel A M, Knappe S, et al. Glass-blown spherical microcells for chip-scale atomic devices[J]. Sensors and Actuators A: Physical, 2008, 143(1): 175-180.
[15] [15] Knappe S, Schwindt P, Shah V, et al. A chip-scale atomic clock based on 87Rb with improved frequency stability[J]. Optics Express, 2005, 13(4): 1249-1253.
[16] [16] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.
[17] [17] Lett P D, Watts R N, Westbrook C I, et al. Observation of atoms laser cooled below the Doppler limit[J]. Physical Review Letters, 1988, 61(2): 169-172.
[18] [18] Keith D W, Ekstrom C R, Turchette Q A, et al. An interferometer for atoms[J]. Physical Review Letters, 1991, 66(21): 2693-2696.
[19] [19] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10–18 Instability[J]. Science, 2013, 341(6151): 1215-1218.
[20] [20] Yang Y A, Luo W T, Zhang J L, et al. Minute-scale Schrdinger-cat state of spin-5/2 atoms[J]. Nature Photonics, 2025, 19(1): 89-94.
[22] [22] Baumgart I, Cai J M, Retzker A, et al. Ultrasensitive magnetometer using a single atom[J]. Physical Review Letters, 2016, 116(24): 240801.
[23] [23] Campbell W C, Hamilton P, Jansen P, et al. Rotation sensing with trapped ions: A Sagnac interferometer in a spin-space domain[J]. Physical Review A, 2017, 96(4): 042109.
[24] [24] Gilmore K A, Affolter M, Lewis-Swan R J, et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals[J]. Science, 2021, 373(6555): 673-678.
[25] [25] Liu Y, Lu P, Rao X, et al. A single-atom mechano-optical transducer for sensing sub-attonewton vector DC force[J]. Applied Physics Letters, 2022, 121(25): 254002.
[26] [26] Wei Y F, Chao S J, Cui K F, et al. Improved measurement of the differential polarizability using co-trapped ions[J]. Physical Review Letters, 2024, 133(3): 033001.
[27] [27] Rui Y, Zhang L, Li R, et al. Subrecoil cooling of 6Li atoms by 2S→3P ultraviolet narrow transition[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(8): 280313.
[28] [28] Zaitsev A M. Optical Properties of Diamond: A Data Handbook[M]. Berlin: Springer, 2001.
[29] [29] Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.
[30] [30] Jensen K, Leefer N, Jarmola A, et al. Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond[J]. Physical Review Letters, 2014, 112(16): 160802.
[31] [31] Fescenko I, Jarmola A, Savukov I, et al. Diamond magnetometer enhanced by ferrite flux concentrators[J]. Physical Review Research, 2020, 2(2): 023394.
[32] [32] Liu G Q, Liu R B, Li Q. Nanothermometry with enhanced sensitivity and enlarged working range using diamond sensors[J]. Accounts of Chemical Research, 2023, 56(2): 95-105.
[33] [33] Trofimov S, Lips K, Naydenov B. Voltage detected single spin dynamics in diamond at ambient conditions[J]. Nature Communications, 2025, 16(1): 3518.
[34] [34] Jarmola A, Lourette S, Acosta V M, et al. Demonstration of diamond nuclear spin gyroscope[J]. Science Advances, 2021, 7(43): eabl3840.
[35] [35] Nguyen C T, Evans R E, Sipahigil A, et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond[J]. Applied Physics Letters, 2018, 112(20): 203102.
[36] [36] Han Y, Pederson C, Matthews B E, et al. Creation of color centers in diamond by recoil implantation through dielectric films[J]. Applied Physics Letters, 2024, 124(4): 044007.
[37] [37] Guo X, Yang B, Zhang X, et al. Diamond photo-electric detectors with introduced silicon-vacancy color centers[J]. Journal of Materials Chemistry C, 2024, 12(38): 15483-15490.
[39] [39] Wang J F, Liu L, Liu X D, et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide[J]. Nature Materials, 2023, 22(4): 489-494.
[40] [40] Hu H, Zhou Y, Yi A, et al. Room-temperature waveguide integrated quantum register in a semiconductor photonic platform[J]. Nature Communications, 2024, 15: 10256.
[41] [41] Shen Y, Zheng W, Zhu K, et al. Variability and yield in h-BN-based memristive circuits: the role of each type of defect[J]. Advanced Materials, 2021, 33(41): 2103656.
[42] [42] Gottscholl A, Kianinia M, Soltamov V, et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature[J]. Nature Materials, 2020, 19(5): 540-545.
[43] [43] Scholten S C, Singh P, Healey A J, et al. Multi-species optically addressable spin defects in a van der Waals material[J]. Nature Communications, 2024, 15(1): 6727.
[44] [44] Hald J, Srensen J L, Schori C, et al. Spin squeezed atoms: a macroscopic entangled ensemble created by light[J]. Physical Review Letters, 1999, 83(7): 1319-1322.
[45] [45] Wineland D J, Bollinger J J, Itano W M, et al. Spin squeezing and reduced quantum noise in spectroscopy[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 46(11): R6797-R6800.
[46] [46] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708.
[47] [47] Slusher R E, Hollberg L W, Yurke B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Physical Review Letters, 1985, 55(22): 2409-2412.
[48] [48] Aasi J, Abadie J, Abbott B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619.
[49] [49] Gao L, Zheng L A, Lu B, et al. Generation of squeezed vacuum state in the millihertz frequency band[J]. Light, Science & Applications, 2024, 13(1): 294.
[50] [50] Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[51] [51] Becker P, Pohl H J, Riemann H, et al. Enrichment of silicon for a better kilogram[J]. Physica Status Solidi, 2010, 207(1): 49-66.
[52] [52] Acharya R, Coke M, Adshead M, et al. Highly 28Si enriched silicon by localised focused ion beam implantation[J]. Communications Materials, 2024, 5: 57.
[53] [53] Dwyer K J, Pomeroy J M, Simons D S, et al. Enriching28Si beyond 99.9998% for semiconductor quantum computing[J]. Journal of Physics D: Applied Physics, 2014, 47(34): 345105.
[54] [54] Becher C, Gao W, Kar S, et al. 2023 roadmap for materials for quantum technologies[J]. Materials for Quantum Technology, 2023, 3(1): 012501.
[55] [55] Lenzini F, Janousek J, Thearle O, et al. Integrated photonic platform for quantum information with continuous variables[J]. Science Advances, 2018, 4(12): eaat9331.
[56] [56] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377.
[57] [57] Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978.
[58] [58] Boes A, Chang L, Langrock C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396.
Get Citation
Copy Citation Text
ZHANG Xianyu, REN Qingying, CHEN Chang, GU Yanli, FU Lili, HAO Xueyuan, LI Wei. Review of Key Technologies in Quantum Sensing Research[J]. Semiconductor Optoelectronics, 2025, 46(4): 575
Category:
Received: Apr. 28, 2025
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: