Acta Optica Sinica, Volume. 38, Issue 8, 0828001(2018)
Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization
Fig. 2. Hyperspectral image classification framework based on spatial-spectral 3D-CNN model
Fig. 3. Illustration of hyperspectral pixel adjacent sparse matrix. (a) Pixel adjacent sparse matrix; (b) image four-neighbor model (K=4); (c) image eight-neighbor model (K=8)
Fig. 4. Classification results comparison of different algorithms on Indian Pines dataset (16 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
Fig. 5. Classification results comparison of different algorithms on Pavia University dataset (9 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
Fig. 6. Classification and unknown region generalization result on Pavia Center dataset (9 categories). (a) Pseud color image; (b) true image;(c) 3D-CNN-CRF(feature dimension: 34); (d) 3D-CNN-CRF (feature dimension: 68); (e) 3D-CNN-CRF (feature dimension: 102); (f) unknown region result
Fig. 7. Influence of spectral features with different dimensions on classification accuracy
|
|
|
|
Get Citation
Copy Citation Text
Zhuqiang Li, Ruifei Zhu, Fang Gao, Xiangyu Meng, Yuan An, Xing Zhong. Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization[J]. Acta Optica Sinica, 2018, 38(8): 0828001
Category: Remote Sensing and Sensors
Received: Jan. 29, 2018
Accepted: Apr. 2, 2018
Published Online: Sep. 6, 2018
The Author Email: