Acta Optica Sinica, Volume. 38, Issue 8, 0828001(2018)

Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization

Zhuqiang Li1、*, Ruifei Zhu1,2, Fang Gao1, Xiangyu Meng3, Yuan An1, and Xing Zhong1
Author Affiliations
  • 1 Chang Guang Satellite Technology Co.Ltd., Key Laboratory of Satellite Remote Sensing Application Technology of Jilin Province, Changchun, Jilin 130000, China
  • 2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 3 Jilin Provincial Land Survey & Planning Institute, Changchun, Jilin 130061, China;
  • show less
    Figures & Tables(11)
    Flow chart of experimental method
    Hyperspectral image classification framework based on spatial-spectral 3D-CNN model
    Illustration of hyperspectral pixel adjacent sparse matrix. (a) Pixel adjacent sparse matrix; (b) image four-neighbor model (K=4); (c) image eight-neighbor model (K=8)
    Classification results comparison of different algorithms on Indian Pines dataset (16 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
    Classification results comparison of different algorithms on Pavia University dataset (9 categories). (a) Pseud color image; (b) true image; (c) LDM-FL; (d) 2D-CNN; (e) 3D-CNN; (f) 3D-CNN-CRF
    Classification and unknown region generalization result on Pavia Center dataset (9 categories). (a) Pseud color image; (b) true image;(c) 3D-CNN-CRF(feature dimension: 34); (d) 3D-CNN-CRF (feature dimension: 68); (e) 3D-CNN-CRF (feature dimension: 102); (f) unknown region result
    Influence of spectral features with different dimensions on classification accuracy
    • Table 1. Related parameter settings of different algorithms

      View table

      Table 1. Related parameter settings of different algorithms

      AlgorithmParameter
      kc1sc1pc1kc2sc2pc2fc1fc2lrkcrfλcrf
      2D-CNN3×3[1,1]2×23×3[1,2]2×24002000.005--
      3D-CNN3×3×6[1,1,4]3×3×33×3×6[1,1,2]3×3×34002000.005--
      3D-CNN-CRF3×3×6[1,1,4]3×3×33×3×6[1,1,2]3×3×34002000.00580.375
    • Table 2. Results of accuracy comparison of different algorithms on Indian Pines dataset (16 categories) %

      View table

      Table 2. Results of accuracy comparison of different algorithms on Indian Pines dataset (16 categories) %

      Accuracy indicatorCategoryAlgorithm
      LDM-FLp-CNN*2D-CNN3D-CNN3D-CNN-CRF
      C197.8783.39100100100
      C289.6785.4196.3789.6097.25
      C389.6482.7678.5296.0499.88
      C493.6082.1489.4387.4095.16
      C596.4795.2493.2897.2099.14
      C610099.2596.2497.9699.05
      C777.7891.4795.4587.50100
      CAC810099.81100100100
      C910090.4492.31100100
      C1087.6082.3993.1388.5892.62
      C1198.6190.2092.1596.9799.62
      C1291.2189.8187.092.9398.10
      C1391.9387.6098.5699.01100
      C1498.9896.2096.0399.3699.76
      C1596.9291.5488.3792.0494.54
      C1694.9093.8690.2998.9198.92
      OA94.690.1692.2794.8598.18
      Kappa93.8889.9191.2194.1497.92
    • Table 3. Results of accuracy comparison of different algorithms on Pavia University dataset (9 categories)%

      View table

      Table 3. Results of accuracy comparison of different algorithms on Pavia University dataset (9 categories)%

      Accuracy indicatorCategoryAlgorithm
      LDM-FLp-CNN*2D-CNN3D-CNN3D-CNN-CRF
      C196.0387.3497.1298.2299.01
      C299.0394.6399.4599.3499.67
      C390.4286.4789.8490.4694.17
      C491.9996.2998.4899.2899.74
      CAC597.899.6510099.4899.78
      C689.6193.2386.8590.5795.45
      C771.7593.1986.1295.0998.21
      C887.1786.4294.4696.3298.18
      C992.6810098.8598.4498.23
      OA9492.5695.697.298.6
      Kappa92.191.794.796.398.1
    • Table 4. 2D/3D-CNN training, testing and optimization time for three datasets

      View table

      Table 4. 2D/3D-CNN training, testing and optimization time for three datasets

      DatasetSize of datasetAlgorithmTime
      Feature extraction /min2D/3D-CNN training /min2D/3D-CNN testing /minCRF /s
      Indian Pines145×145×2202D-CNN3D-CNN-CRF0.60.92.63.70.851.2-26.3
      Pavia University610×340×1032D-CNN3D-CNN-CRF1.31.82.94.31.62.2-32.5
      Pavia Center1096×715×1022D-CNN3D-CNN-CRF1.72.13.45.31.72.6-42.5
    Tools

    Get Citation

    Copy Citation Text

    Zhuqiang Li, Ruifei Zhu, Fang Gao, Xiangyu Meng, Yuan An, Xing Zhong. Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization[J]. Acta Optica Sinica, 2018, 38(8): 0828001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 29, 2018

    Accepted: Apr. 2, 2018

    Published Online: Sep. 6, 2018

    The Author Email:

    DOI:10.3788/AOS201838.0828001

    Topics