Chinese Journal of Ship Research, Volume. 16, Issue 1, 158(2021)

Condition monitoring method for marine engine room equipment based on machine learning

Ruihan WANG1,2, Hui CHEN1,2, and Cong GUAN1,2
Author Affiliations
  • 1School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China
  • 2Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430063, China
  • show less
    Figures & Tables(9)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Technical parameters of 7K98MC marine diesel engine

      View table
      View in Article

      Table 1. Technical parameters of 7K98MC marine diesel engine

      技术指标数值技术指标数值
      缸径/mm980最大额定转速/(r·min−1)94
      行程/mm2 660最大平均指示压力/bar18.2
      活塞面积/m20.754 3最高爆发压力/bar140.1
      整机重量/t2 100涡轮增压器3×TPL85-B11
      最大功率/kW40 055发火顺序1-7-2-5-4-3-6
    • Table 2. Comparison between simulation results and shop test data

      View table
      View in Article

      Table 2. Comparison between simulation results and shop test data

      柴油机负荷/%结果功率/kW油耗/(g·kW−1·h−1气缸最高爆发压力/bar气缸压缩压力/bar涡轮转速/(r ·min−1扫气箱压力/bar排气管温度/K
      25仿真值10 105186.0474.0447.9544851.33579.29
      实验值10 014186.3773.6047.4042911.32577.17
      误差/%0.92−0.180.591.164.530.540.37
      50仿真值20 226179.6099.4372.6278962.07593.68
      实验值20 028179.4698.0072.0077822.05600.17
      误差/%0.990.081.460.861.470.89−1.08
      75仿真值30345175.03127.91100.139 7102.86611.63
      实验值30041176.01128.0099.909 6702.87614.57
      误差/%1.01−0.55−0.070.230.41−0.40−0.48
      100仿真值40462177.69138.40125.6710 9433.58660.83
      实验值40055177.98139.40126.7010 9463.63663.90
      误差/%1.02−0.16−0.71−0.81−0.03−1.39−0.46
    • Table 3. Simulation datasets

      View table
      View in Article

      Table 3. Simulation datasets

      类别工况特征个数数量
      1正常15400
      2压缩机故障15100
      3空冷机故障15100
      4喷油定时错误15100
    • Table 4. The accuracy FDR and FAR under different hybrid fault monitoring schemes

      View table
      View in Article

      Table 4. The accuracy FDR and FAR under different hybrid fault monitoring schemes

      方法FDR/%FAR/%
      PCA-OS81.21.63
      PCA-RC81.11.62
      PCA-iforest81.31.6
      MDS-OS851.24
      MDS-RC85.51.23
      MDS-iforest87.11.2
      LLE-OS92.11.1
      LLE-RC93.18.5
      LLE-iforest93.49
      TSNE-OS94.97.5
      TSNE-RC96.16
      TSNE-iforest98.53
    Tools

    Get Citation

    Copy Citation Text

    Ruihan WANG, Hui CHEN, Cong GUAN. Condition monitoring method for marine engine room equipment based on machine learning[J]. Chinese Journal of Ship Research, 2021, 16(1): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Intelligent Engine Room

    Received: Oct. 20, 2020

    Accepted: --

    Published Online: Mar. 27, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02150

    Topics