Chinese Journal of Lasers, Volume. 48, Issue 9, 0910001(2021)
Hyperspectral Image Classification Method Based on Image Reconstruction Feature Fusion
Fig. 2. Spatial domain blocks of pixel xij. (a) Normal position; (b) edge position; (c) corner position
Fig. 4. Indian Pines hyperspectral image. (a) False colour image; (b) actual feature map
Fig. 5. Pavia University hyperspectral image. (a) False colour image; (b) actual feature map
Fig. 7. Classification results of each methods on Indian Pines dataset. (a) False colour image; (b) ground truth; (c) KNN method; (d) SAM method; (e) SVM method; (f) EPF method; (g) LBP-SVM method; (h) SVMCK method; (i) LBP-SAM method; (j) CDSRC method; (k) CCJSR method; (l) RSFM method
Fig. 8. Classification results of each methods on Pavia University dataset. (a) False colour image; (b) ground truth; (c) KNN method; (d) SAM method; (e) SVM method; (f) EPF method; (g) LBP-SVM method; (h) SVMCK method; (i) LBP-SAM method; (j) CDSRC method; (k) CCJSR method; (l) RSFM method
|
|
|
|
Get Citation
Copy Citation Text
Jiamin Liu, Chao Zheng, Limei Zhang, Zehua Zou. Hyperspectral Image Classification Method Based on Image Reconstruction Feature Fusion[J]. Chinese Journal of Lasers, 2021, 48(9): 0910001
Category: remote sensing and sensor
Received: Sep. 4, 2020
Accepted: Nov. 18, 2020
Published Online: May. 17, 2021
The Author Email: Liu Jiamin (liujm@cqu.edu.cn)