Chinese Journal of Lasers, Volume. 48, Issue 9, 0910001(2021)

Hyperspectral Image Classification Method Based on Image Reconstruction Feature Fusion

Jiamin Liu*, Chao Zheng, Limei Zhang, and Zehua Zou
Author Affiliations
  • Key Laboratory of Optoelectronic Technique System of the Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(12)
    Calculation process of LBP texture features in hyperspectral data
    Spatial domain blocks of pixel xij. (a) Normal position; (b) edge position; (c) corner position
    Fusion process of image reconstruction features
    Indian Pines hyperspectral image. (a) False colour image; (b) actual feature map
    Pavia University hyperspectral image. (a) False colour image; (b) actual feature map
    Influence of spatial window on classification accuracy
    Classification results of each methods on Indian Pines dataset. (a) False colour image; (b) ground truth; (c) KNN method; (d) SAM method; (e) SVM method; (f) EPF method; (g) LBP-SVM method; (h) SVMCK method; (i) LBP-SAM method; (j) CDSRC method; (k) CCJSR method; (l) RSFM method
    Classification results of each methods on Pavia University dataset. (a) False colour image; (b) ground truth; (c) KNN method; (d) SAM method; (e) SVM method; (f) EPF method; (g) LBP-SVM method; (h) SVMCK method; (i) LBP-SAM method; (j) CDSRC method; (k) CCJSR method; (l) RSFM method
    • Table 1. Classification results of different methods on Indian Pines dataset

      View table

      Table 1. Classification results of different methods on Indian Pines dataset

      Method(OA±Std) /%
      A=1%A=2%A=4%A=6%A=8%A=10%
      KNN55.08±1.4459.30±1.4363.54±1.0366.38±0.4767.62±0.6768.61±0.60
      SAM54.53±2.0760.01±1.1063.76±0.8466.04±0.6668.11±0.8769.03±0.48
      SVM56.98±2.1665.23±1.4972.29±1.2976.25±1.4179.22±0.7880.71±0.72
      EPF69.40±3.5076.51±4.2387.37±2.5091.31±1.9293.24±1.4994.93±0.89
      LBP-SVM78.37±2.0884.76±2.0191.48±0.7293.13±0.4594.76±0.3296.61±0.34
      SVMCK80.46±1.6784.94±1.7891.56±0.4594.50±0.7296.08±0.4296.94±0.52
      LBP-SAM74.08±2.7782.33±2.0188.19±1.6192.05±1.2894.82±1.1595.12±0.68
      CDSRC73.84±2.3077.63±0.9079.62±0.7580.80±0.5381.22±0.8982.18±0.41
      CCJSR70.55±2.3279.67±1.4487.16±1.0191.78±0.5294.38±0.7195.65±0.42
      RSFM86.87±1.7893.26±1.1196.85±0.7798.12±0.3998.84±0.3699.06±0.31
    • Table 2. Classification results of various ground objects in Indian Pines dataset under different methods

      View table

      Table 2. Classification results of various ground objects in Indian Pines dataset under different methods

      ClassKNNSAMSVMEPFLBP-SVMSVMCKLBP-SAMCDSRCCCJSRRSFM
      10.3460.7350.6830.5850.9751.0000.0900.8921.0001.000
      20.5380.5470.6990.9220.9660.9450.9290.7520.9560.995
      30.5100.6320.7620.9330.9290.9410.9200.7070.9270.979
      40.3750.4420.6860.8730.9530.8300.7780.6780.8980.972
      50.8010.8440.7990.9630.9590.9840.9950.9110.9720.984
      60.8250.8260.9161.0000.9730.9910.9960.9410.9690.999
      70.7000.7500.7000.9570.8211.0000.8500.9170.7931.000
      80.9070.9450.9671.0001.0001.0000.9730.9820.9951.000
      90.3140.3330.4831.0000.9380.6671.0000.8330.9381.000
      100.6020.5830.7190.8570.9740.9520.8560.7530.9640.979
      110.6910.7210.7710.9660.9680.9730.9470.7610.9590.994
      120.4910.4790.8080.9610.9240.9980.9720.7930.9170.989
      130.8610.7750.8790.9950.9771.0000.9570.9730.9740.984
      140.9060.8910.9420.9971.0000.9690.9990.9370.9911.000
      150.5020.4980.6230.8910.9490.9870.9130.7250.9591.000
      160.9880.9870.9641.0000.9601.0000.9240.9140.9631.000
      OA0.6820.6970.7950.9480.9660.9640.9510.8130.9590.992
      AA0.6470.6850.7750.9310.9540.9570.9460.8420.9480.971
      κ0.6370.6540.7650.9410.9610.9590.9430.7860.9530.991
    • Table 3. Classification results of different classification methods on Pavia University dataset

      View table

      Table 3. Classification results of different classification methods on Pavia University dataset

      Method(OA±Std) /%
      A=1%A=2%A=4%A=6%A=8%A=10%
      KNN77.79±0.7179.88±0.4881.79±0.4782.52±0.3583.18±0.1983.62±0.18
      SAM77.80±0.6479.82±0.5281.75±0.4582.57±0.2283.11±0.4183.60±0.20
      SVM84.97±0.6387.97±0.6789.47±0.3090.39±0.3490.90±0.1191.12±0.20
      EPF93.11±1.6395.16±1.2696.24±0.8197.18±0.6197.86±0.4098.01±0.24
      LBP-SVM90.78±0.7694.61±0.4296.11±0.2997.03±0.3197.65±0.2797.97±0.13
      SVMCK92.54±3.3496.21±0.5397.86±0.3298.34±0.2698.75±0.0798.91±0.15
      LBP-SAM91.74±1.1892.67±1.2494.04±0.8195.69±0.7196.11±0.5396.32±0.42
      CDSRC81.04±0.8982.63±0.5383.79±0.2884.21±0.4284.58±0.2585.03±0.23
      CCJSR78.17±0.6782.95±0.5187.80±0.4090.26±0.3692.33±0.2193.40±0.27
      RSFM96.51±0.5998.38±0.4999.13±0.3099.44±0.2499.58±0.1899.73±0.16
    • Table 4. Classification results of various ground objects in Pavia University dataset under different methods

      View table

      Table 4. Classification results of various ground objects in Pavia University dataset under different methods

      ClassKNNSAMSVMEPFLBP-SVMSVMCKLBP-SAMCDSRCCCJSRRSFM
      10.9180.9170.9130.9940.9660.9990.9970.8910.9521.000
      20.8720.8740.9391.0000.9940.9870.9930.8840.9750.998
      30.6270.6470.8610.7740.9700.9890.9410.7240.8351.000
      40.9610.9460.9590.9840.9411.0000.9700.9420.9900.999
      50.9890.9980.9971.0000.9201.0000.9990.9970.9471.000
      60.7050.7100.8660.9510.9980.9770.9060.7090.9280.999
      70.6900.6710.8641.0000.9750.9980.9600.7640.8791.000
      80.6550.6540.7870.9990.9880.9880.9490.7170.8061.000
      90.9980.9960.9930.9990.8390.9971.0001.0000.8561.000
      OA0.8350.8350.9120.9810.9790.9100.9650.8510.9370.998
      AA0.8240.8240.9090.9670.9550.9930.9580.8470.9080.999
      κ0.7780.7780.8820.9750.9710.9860.9560.8010.9160.998
    Tools

    Get Citation

    Copy Citation Text

    Jiamin Liu, Chao Zheng, Limei Zhang, Zehua Zou. Hyperspectral Image Classification Method Based on Image Reconstruction Feature Fusion[J]. Chinese Journal of Lasers, 2021, 48(9): 0910001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Sep. 4, 2020

    Accepted: Nov. 18, 2020

    Published Online: May. 17, 2021

    The Author Email: Liu Jiamin (liujm@cqu.edu.cn)

    DOI:10.3788/CJL202148.0910001

    Topics