Journal of Synthetic Crystals, Volume. 54, Issue 3, 445(2025)

A Novel Suboxide Chemical Vapor Transport Technique for Cost-Effective Growth of β-Ga2O3 Thick Films

CHEN Xuyang, LI Haobo, QIN Huayao, XU Mingyao, LU Yinmei, and HE Yunbin*
Author Affiliations
  • School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • show less
    References(22)

    [1] [1] YUAN Y, HAO W B, MU W X, et al. Toward emerging gallium oxide semiconductors: a roadmap[J]. Fundamental Research, 2021, 1(6): 697-716.

    [2] [2] SASAKI K. Prospects for -Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101.

    [3] [3] XIA N, LIU Y Y, WU D, et al. -Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2023, 935: 168036.

    [4] [4] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//Oxide-based Materials and Devices IX. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018, 10533: 9-14.

    [5] [5] Novel Crystal Technology, Inc., Shinshu University. Novel crystal technology achieves breakthrough in Ga2O3 crystal growth, paving way for larger, higher-quality wafers[EB/OL]. (2024-3-29)[2024-10-30]. https://novelcrystal.co.jp/eng/2023/2340/.

    [6] [6] KIM H C, JANARDHANAM V, POKHREL S, et al. Epilayer thickness effect on the electrical and breakdown characteristics of vertical -Ga2O3 Schottky barrier diode[J]. Journal of Crystal Growth, 2025, 649: 127941.

    [7] [7] LI W S, HU Z Y, NOMOTO K, et al. 1230 V -Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of <1 A/cm2[J]. Applied Physics Letters, 2018, 113(20): 202101.

    [8] [8] HOFFMANN G, BUDDE M, MAZZOLINI P, et al. Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: the examples of SnO and Ga2O[J]. APL Materials, 2020, 8(3): 031110.

    [9] [9] VOGT P, HENSLING F V E, AZIZIE K, et al. Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy[J]. APL Materials, 2021, 9(3): 031101.

    [10] [10] WANG Q L, CHEN J, HUANG P, et al. Influence of growth temperature on the characteristics of -Ga2O3 epitaxial films and related solar-blind photodetectors[J]. Applied Surface Science, 2019, 489: 101-109.

    [11] [11] HUANG P, CHEN L F, SHI D T, et al. MgO (100) as an affordable support for heteroepitaxial growth of high-quality -Ga2O3 thin films and related highly-sensitive solar-blind UV photodetectors[J]. Applied Surface Science, 2023, 634: 157641.

    [12] [12] WASEEM A, REN Z J, HUANG H C, et al. A review of recent progress in -Ga2O3 epitaxial growth: effect of substrate orientation and precursors in metal-organic chemical vapor deposition[J]. Physica Status Solidi (a), 2023, 220(8): 2200616.

    [13] [13] BHUIYAN A F M A U, FENG Z X, MENG L Y, et al. Tutorial: metalorganic chemical vapor deposition of -Ga2O3 thin films, alloys, and heterostructures[J]. Journal of Applied Physics, 2023, 133(21): 211103.

    [14] [14] RAFIQUE S, HAN L, NEAL A T, et al. Heteroepitaxy of N-type -Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition[J]. Applied Physics Letters, 2016, 109(13): 132103.

    [15] [15] ZHANG W H, ZHANG H Z, ZHANG Z Z, et al. Heteroepitaxial -Ga2O3 thick films on sapphire substrate by carbothermal reduction rapid growth method[J]. Semiconductor Science and Technology, 2022, 37(8): 085014.

    [16] [16] OSHIMA Y, VLLORA E G, SHIMAMURA K. Quasi-heteroepitaxial growth of -Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2015, 410: 53-58.

    [17] [17] NITTA K, SASAKI K, KURAMATA A, et al. Investigation of high speed -Ga2O3 growth by solid-source trihalide vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2023, 62: SF1021.

    [18] [18] BARIN I. Thermochemical data of pure substances[M]. 3rd ed. Weinheim (Federal Republic of Germany): VCH Verlagsgesellschaft mbH, 1995: 209-742.

    [19] [19] THIEU Q T, SASAKI K, KURAMATA A. Suboxide vapor phase epitaxy for growth of high-purity gallium oxide[J]. Japanese Journal of Applied Physics, 2023, 62: SF1009.

    [20] [20] LI Y W, XIU X Q, XU W L, et al. Microstructural analysis of heteroepitaxial -Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 014003.

    [21] [21] LV Y, MA J, MI W, et al. Characterization of -Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique[J]. Vacuum, 2012, 86(12): 1850-1854.

    [22] [22] TAUC J, MENTH A. States in the gap[J]. Journal of Non-Crystalline Solids, 1972, 8: 569-585.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Xuyang, LI Haobo, QIN Huayao, XU Mingyao, LU Yinmei, HE Yunbin. A Novel Suboxide Chemical Vapor Transport Technique for Cost-Effective Growth of β-Ga2O3 Thick Films[J]. Journal of Synthetic Crystals, 2025, 54(3): 445

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 11, 2024

    Accepted: Apr. 23, 2025

    Published Online: Apr. 23, 2025

    The Author Email: HE Yunbin (ybhe@hubu.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0312

    Topics