Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1521(2023)

Design and implementation of convolution neural network accelerator for Winograd algorithm based on FPGA

Zhao-xu NIU1,2 and Hai-jiang SUN1,2、*
Author Affiliations
  • 1Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    Figures & Tables(18)
    Schematic diagram of Winograd convolution process
    Hardware architecture diagram of convolutional neural network accelerator
    Diagram of hardware quantification flow
    Slice convolution flow chart
    Design drawing of feature data fusion
    Schematic diagram of input data buffer reuse module
    Convolution design drawing of six stage assembly line
    Remote sensing image of river map
    Grayscale image of convolution output
    Status diagram of data accumulation output module
    Display diagram of image data stored in DDR memory
    ZCU104 hardware platform test diagram
    Serial port output result diagram
    • Table 1. Partial results after quantification of VGG-16 network

      View table
      View in Article

      Table 1. Partial results after quantification of VGG-16 network

      层次缩放比例原权重量化后权重
      Conv1-1~Conv3-10.003 906 25-0.553 730 607 032 775 9-34
      Conv3-2~Conv4-30.001 953 125-0.030 606 031 417 846 68-9
      Conv5-1~Conv5-20.000 976 562 5-0.029 665 347 188 711 166-30
      Conv5-30.001 953 1250.027 768 215 164 542 19814
      Fc10.000 244 140 625-0.001 109 445 700 421 929 4-5
      Fc20.000 488 281 25-0.011 262 043 379 247 189-23
      Fc30.003 906 250.000 411 447 166 698 053 50
    • Table 2. Revised VGG-16 network structure table

      View table
      View in Article

      Table 2. Revised VGG-16 network structure table

      层次输入尺寸输出尺寸操作数/G
      Conv1-1224×224×3224×224×640.173 4
      Conv1-2224×224×64224×224×643.699 3
      Conv2-1112×112×64112×112×1281.849 7
      Conv2-2112×112×128112×112×1283.699 3
      Conv3-156×56×12856×56×2561.849 7
      Conv3-256×56×25656×56×2563.699 3
      Conv3-356×56×25656×56×2563.699 3
      Conv4-128×28×25628×28×5121.849 7
      Conv4-228×28×51228×28×5123.699 3
      Conv4-328×28×51228×28×5123.699 3
      Conv5-114×14×51214×14×5120.924 8
      Conv5-214×14×51214×14×5120.924 8
      Conv5-314×14×51214×14×5120.924 8
      Fc17×7×5121×1×4 0960.205 5
      Fc21×1×4 0961×1×4 0960.033 6
      Fc31×1×4 0961×1×450.000 03
      累计30.931 83
    • Table 3. Hardware resource usage

      View table
      View in Article

      Table 3. Hardware resource usage

      片上资源总资源数占用资源数比例/%
      LUT230 400152 94366.38
      LUTRAM101 76068 15866.98
      FF460 80088 29619.16
      BRAM31217355.45
      URAM9696100
      DSP1 72851429.75
    • Table 4. Comparison of network accuracy after hardware implementation

      View table
      View in Article

      Table 4. Comparison of network accuracy after hardware implementation

      网络大小/MBTOP-1 acc损失
      VGG-16(GPU)52779.4%
      VGG-16(FPGA)15178.6%0.8%
    • Table 5. Comparison with existing FPGA acceleration schemes

      View table
      View in Article

      Table 5. Comparison with existing FPGA acceleration schemes

      VGG16加速文献[18文献[17文献[16本文
      平台XC7VX485T

      Zynq

      XC7Z045

      Ultrascale

      KU060

      ZCU104
      时钟/MHz100150200200
      数据精度8 bit16 bit16 bit8 bit
      DSP1 7967801 058514
      卷积层计算性能/GOPS758.19187.8310354.5
      计算效率/GOPS(DSP)0.4220.2410.2930.69
      功耗/W17.89.63259.04
      能效/(GOPS·W-142.5919.512.439.21
    Tools

    Get Citation

    Copy Citation Text

    Zhao-xu NIU, Hai-jiang SUN. Design and implementation of convolution neural network accelerator for Winograd algorithm based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1521

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 13, 2023

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Hai-jiang SUN (sunhaijing@126.com)

    DOI:10.37188/CJLCD.2023-0013

    Topics