Chinese Journal of Lasers, Volume. 46, Issue 10, 1002014(2019)
Fatigue Crack Propagation of Laser Arc Hybrid Welded Joint of Bainitic Steel
Fig. 3. Microstructures of microcells. (a) BM; (b) ADZ; (c) LDZ; (d) CGHAZ; (e) FGHAZ;(f) non-full phase transformation area
Fig. 5. Fatigue crack propagation path of weld area. (a) Lower ΔK area of ADZ; (b) higher ΔK area of ADZ; (c) lower ΔK area of LDZ; (d) higher ΔK area of LDZ
Fig. 6. Fatigue crack propagation path of HAZ. (a) Starting crack position; (b) lower ΔK area; (c) deflection position 1; (d) deflection position 2
Fig. 7. Fracture morphology of each microcell when da/dN=1×10-4 mm·cycle-1. (a) Base metal; (b) local amplification of base metal; (c) ADZ; (d) local amplification of ADZ; (e) LDZ; (f) local amplification of LDZ; (g) HAZ; (h) local amplification of HAZ
Fig. 8. Fracture morphology of each microcell when ΔK=80 MPa·m12. (a) Base metal; (b) local amplification of base metal;(c) ADZ; (d) local amplification of ADZ; (e) LDZ; (f) local amplification of LDZ; (g) HAZ; (h) local amplification of HAZ
|
|
|
Get Citation
Copy Citation Text
Xiaohui Han, Zheng Lei, Rendong Li, Yan Liu, Hui Chen. Fatigue Crack Propagation of Laser Arc Hybrid Welded Joint of Bainitic Steel[J]. Chinese Journal of Lasers, 2019, 46(10): 1002014
Category: laser manufacturing
Received: May. 16, 2019
Accepted: Jun. 17, 2019
Published Online: Oct. 25, 2019
The Author Email: Chen Hui (xnrpt@163.com)