Acta Optica Sinica, Volume. 43, Issue 17, 1714006(2023)

Real-Time Temperature Measurement of High-Power Fiber Laser Core and Its Applications

Zichao Zhou1,2, Wenda Cui1,3,4, Xiaoming Xi1,3, Kai Han1,3、*, Jian Yang2, and Xiaojun Xu1,3,4
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2College of Information and Communication, National University of Defense Technology, Wuhan 430034, Hubei, China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan, China
  • 4Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    References(67)

    [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [2] Yang B L, Wang P, Zhang H W et al. 8 kW near single-mode fiber laser based on broad-spectrum laser dichroic mirror synthesis[J]. Chinese Journal of Lasers, 49, 0816001(2022).

    [3] Song J X, Ren S, Wang G J et al. Realization of 4.2 kW near single mode narrow linewidth laser with domestic tapered fiber[J]. Chinese Journal of Lasers, 49, 0816002(2022).

    [4] Lin H H, Tang X, Li C Y et al. The national single-fiber laser system has obtained 10.6 kW laser output[J]. Chinese Journal of Lasers, 45, 0315001(2018).

    [5] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).

    [6] Zhang S Y, Wang X A. Thermal model of continuous wave end-pumped passively Q-switched laser[J]. Optics Communications, 295, 155-160(2013).

    [7] Fan Y Y, He B, Zhou J et al. Thermal effects in kilowatt all-fiber MOPA[J]. Optics Express, 19, 15162-15172(2011).

    [8] Ilchi-Ghazaani M, Parvin P. Temperature effect on Yb-doped silica fiber laser performance[J]. IEEE Journal of Quantum Electronics, 56, 1600407(2020).

    [9] Lin A X, Peng K, Yu J et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 34, 011005(2022).

    [10] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 472-483(2014).

    [11] Hansen K R, Alkeskjold T T, Broeng J et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letters, 37, 2382-2384(2012).

    [12] Wang X L, Tao R M, Yang B L et al. Relationship between transverse mode instability and stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J]. Chinese Journal of Lasers, 45, 0801008(2018).

    [13] Roohforouz A, Chenar R E, Rezaei-Nasirabad R et al. The effect of population inversion saturation on the transverse mode instability threshold in high power fiber laser oscillators[J]. Scientific Reports, 11, 21116(2021).

    [14] Yang B L, Wang P, Zhang H W et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).

    [15] Scarnera V, Ghiringhelli F, Malinowski A et al. Modal instabilities in high power fiber laser oscillators[J]. Optics Express, 27, 4386-403(2019).

    [16] Tao R M. Study on thermal mode instability of high power narrow linewidth near diffraction limit fiber laser amplifier[D](2015).

    [17] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 21, 2606-2623(2013).

    [18] Jauregui C, Eidam T, Otto H J et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 20, 12912-12925(2012).

    [19] Stihler C, Jauregui C, Tünnermann A et al. Phase-shift evolution of the thermally-induced refractive index grating in high-power fiber laser systems induced by pump-power variations[J]. Optics Express, 26, 19489-19497(2018).

    [20] Stihler C, Jauregui C, Tünnermann A et al. Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers[J]. Light: Science & Applications, 7, 59(2018).

    [21] Zimer H, Kozak M, Liem A et al. Fibers and fiber-optic components for high-power fiber lasers[J]. Proceedings of SPIE, 7914, 791414(2011).

    [22] Ter-Gabrielyan N, Fromzel V, Mu X et al. Resonantly pumped single-mode channel waveguide Er∶YAG laser with nearly quantum defect limited efficiency[J]. Optics Letters, 38, 2431-2433(2013).

    [23] Sanamyan T, Kanskar M, Xiao Y et al. High power diode-pumped 2.7-μm Er3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 19, A1082-A1087(2011).

    [24] Zhou Z C, Wang X L, Tao R M et al. Theoretical study of the temperature distribution in high power gain fiber of gradient doping[J]. Acta Physica Sinica, 65, 104204(2016).

    [25] Kawasaki B S, Hill K O, Johnson D C et al. Narrow-band Bragg reflectors in optical fibers[J]. Optics Letters, 3, 66-68(1978).

    [26] Chen J J, Liu B, Zhang H. Review of fiber Bragg grating sensor technology[J]. Frontiers of Optoelectronics in China, 4, 204-212(2011).

    [27] Bonopera M. Fiber-bragg-grating-based displacement sensors: review of recent advances[J]. Materials, 15, 5561(2022).

    [28] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [29] Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 59, 060901(2020).

    [30] Xiao F, Chen G S, Hulsey J L. Monitoring bridge dynamic responses using fiber Bragg grating tiltmeters[J]. Sensors, 17, 2390(2017).

    [31] Xiao F, Meng D J, Yu Y et al. Estimation of vehicle-induced bridge dynamic responses using fiber Bragg grating strain gages[J]. Science Progress, 103, 003685041987420(2020).

    [32] Zhang L, Cheng X X, Wu G et al. Reference-free damage identification method for highway continuous girder bridges based on long-gauge fibre Bragg grating strain sensors[J]. Measurement, 195, 111064(2022).

    [33] Wang L T, Han H L. Design of an intelligent fiber Bragg grating temperature measurement system for electrical equipment[J]. Journal of Physics: Conference Series, 1881, 022003(2021).

    [34] Huang F Q, Chen T, Si J H et al. Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing[J]. Optics Communications, 452, 233-237(2019).

    [35] Knall J, Vigneron P B, Engholm M et al. Laser cooling in a silica optical fiber at atmospheric pressure[J]. Optics Letters, 45, 1092-1095(2020).

    [36] Leich M, Fiebrandt J, Schwuchow A et al. Length distributed measurement of temperature effects in Yb-doped fibers during pumping[J]. Optical Engineering, 53, 066101(2014).

    [37] Zhou Z Y, Li Z X, Tang N et al. On-line temperature measurement of fiber Bragg gratings inside a fiber laser[J]. Optical Fiber Technology, 45, 137-140(2018).

    [38] Hu Q H, Wang P R, Wang M et al. Fabrication of superimposed fiber Bragg gratings and applications in fiber laser oscillators[J]. Optik, 214, 164583(2020).

    [39] Aoyama K, Nakagawa K, Itoh T. Optical time domain reflectometry in a single-mode fiber[J]. IEEE Journal of Quantum Electronics, 17, 862-868(1981).

    [40] Xu Z H, Liu D M, Liu H R et al. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Frontiers of Optoelectronics in China, 2, 215-218(2009).

    [41] Weng Y, Ip E, Pan Z Q et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 23, 9024-9039(2015).

    [42] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008).

    [43] Soller B J, Gifford D K, Wolfe M S et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 13, 666-674(2005).

    [44] Wang X Z, Li W H, Chen L A et al. Thermal and mechanical properties of tapered single mode fiber measured by OFDR and its application for high-sensitivity force measurement[J]. Optics Express, 20, 14779-14788(2012).

    [45] Geng J P, Jin R H, Xu J D et al. An improved model for the fully distributed temperature single-mode fibre optic sensor based on Raman optical frequency-domain reflectometry[J]. Journal of Optics A: Pure and Applied Optics, 6, 932-936(2004).

    [46] Garcus D, Gogolla T, Krebber K et al. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements[J]. Journal of Lightwave Technology, 15, 654-662(1997).

    [47] Zhang Z Y, Bao X Y. Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system[J]. Optics Express, 16, 10240-10247(2008).

    [48] Wu H J, Qian Y, Li H Y et al. Safety monitoring of long distance power transmission cables and oil pipelines with OTDR technology[C], ATu1M.4(2015).

    [49] Fu C L, Peng Z W, Li P F et al. Research on distributed fiber temperature/strain/shape sensing based on OFDR[J]. Laser & Optoelectronics Progress, 60, 1106007(2023).

    [50] Froggatt M E, Gifford D K, Kreger S et al. Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry[J]. Journal of Lightwave Technology, 24, 4149-4154(2006).

    [51] Beier F, Heinzig M, Walbaum T et al. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C], ATH2A.23(2015).

    [52] Beier F, Heinzig M, Haarlammert N et al. In situ temperature measurement in high power fiber amplifiers[C], CJ_10_6(2015).

    [53] Beier F, Plötner M, Sattler B et al. Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities[J]. Optics Letters, 42, 4311-4314(2017).

    [54] Lou Z K, Yang B L, Han K et al. Real-time in situ distributed fiber core temperature measurement in hundred-watt fiber laser oscillator pumped by 915/976 nm LD sources[J]. Scientific Reports, 10, 9006(2020).

    [55] Gapontsev V, Gapontsev D, Platonov N et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness[C], 508(2006).

    [56] Rosales-Garcia A, Tobioka H, Abedin K et al. 2.1 kW single mode continuous wave monolithic fiber laser[J]. Proceedings of SPIE, 9344, 93441G(2015).

    [57] Lou Z K, Han K, Yang B L et al. Realization of in situ fiber-core temperature measurement in a kilowatt-level fiber laser oscillator: design and optimization of the method based on OFDR[J]. Journal of Lightwave Technology, 39, 2573-2582(2021).

    [58] Lou Z K, Huang Z H et al. Temperature characteristic of a gain fiber core in distributed side-coupled cladding-pumped fiber amplifiers with different pump schemes[J]. Optics Continuum, 1, 1752-1760(2022).

    [59] Han K, Lou Z K, Zhou Z C et al. Quantitative evaluation of the heat induced by fusion splices in high-power fiber lasers[J]. Optics Communications, 530, 129207(2023).

    [60] Hansryd J, Dross F, Westlund M et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 19, 1691-1697(2001).

    [61] Chen C W, Wisal K, Ahmadi P et al. Suppressing stimulated Brillouin scattering by selective mode excitation in multimode fibers[C], FF2L.3(2022).

    [62] Lorenzen M, Noordegraaf D, Nielsen C V et al. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation[C](2008).

    [63] Lou Z K, Han K, Wang X L et al. Increasing the SBS threshold by applying a flexible temperature modulation technique with temperature measurement of the fiber core[J]. Optics Express, 28, 13323-13335(2020).

    [64] Yan M J, Li S Y, Han Z G et al. Theoretical and experimental study on the thermally dependent transient response of the high power continuous wave Yb-doped fiber laser[J]. Applied Optics, 58, 5525-5532(2019).

    [65] Henry L J, Shay T M, Hult D W et al. Thermal effects in narrow linewidth single and two tone fiber lasers[J]. Optics Express, 19, 6164-6176(2011).

    [66] Steinborn R, Koglbauer A, Bachor P et al. A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm[J]. Optics Express, 21, 22693-22698(2013).

    [67] Han K, Lou Z K, Xi X M et al. Low-temperature properties of the ytterbium-doped fiber laser cooled by the thermoelectric cooler[J]. Optical Fiber Technology, 73, 103036(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zichao Zhou, Wenda Cui, Xiaoming Xi, Kai Han, Jian Yang, Xiaojun Xu. Real-Time Temperature Measurement of High-Power Fiber Laser Core and Its Applications[J]. Acta Optica Sinica, 2023, 43(17): 1714006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: May. 16, 2023

    Accepted: Jul. 25, 2023

    Published Online: Sep. 11, 2023

    The Author Email: Han Kai (hankai0071@nudt.edu.cn)

    DOI:10.3788/AOS230988

    Topics